分析 (1)根據(jù)|$\sqrt{2}$-x|=0得出x=$\sqrt{2}$,再代入化簡后的分式即可;
(2)設(shè)化簡后的分式的值等于-2,利用分式的有意義的條件解答即可.
解答 解:(1)($\frac{2{x}^{2}+2x}{{x}^{2}-1}$-$\frac{{x}^{2}-x}{{x}^{2}-2x+1}$)÷$\frac{x}{x+1}$
=$[\frac{2x(x+1)}{(x+1)(x-1)}-\frac{x(x-1)}{(x-1)^{2}}]×\frac{x+1}{x}$
=$(\frac{2x}{x-1}-\frac{x}{x-1})×\frac{x+1}{x}$
=$\frac{x}{x-1}×\frac{x+1}{x}$
=$\frac{x+1}{x-1}$,
∵|$\sqrt{2}$-x|=0,
∴$\sqrt{2}-x=0$,
得,x=$\sqrt{2}$,
當(dāng)x=$\sqrt{2}$時(shí),原式=$\frac{x+1}{x-1}=\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}$;
(2)原代數(shù)式的值能等于-2.
理由:當(dāng)$\frac{x+1}{x-1}=-2$時(shí),
解得,x=$\frac{1}{3}$,
檢驗(yàn):當(dāng)x=$\frac{1}{3}$時(shí),原分式有意義,
所以原代數(shù)式的值能等于-2.
點(diǎn)評 本題考查分式的化簡求值,解題的關(guān)鍵是在化簡中一定要仔細(xì)認(rèn)真,注意解得的分式方程的解還要檢驗(yàn)是否使得原分式方程有意義.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+y)(y-x)=x2-y2 | B. | (-x+2y)2=x2-4xy+4y2 | ||
C. | (2x-$\frac{1}{2}$y)2=4x2-xy+$\frac{1}{4}$y2 | D. | (-3x-2y)2=9x2-12xy+4y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | C. | 相交 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com