【題目】如圖1,在中,,,點MAB的中點,連接MC,點P是線段BC延長線上一點,且,連接MPAC于點H.將射線MP繞點M逆時針旋轉(zhuǎn)交線段CA的延長線于點D

1)找出與相等的角,并說明理由.

2)如圖2,求的值.

3)在(2)的條件下,若,求線段AB的長.

【答案】1;理由見解析;(2;(3.

【解析】

1.由直角三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)推知即可;

2)如圖,過點CMP于點G.構(gòu)造全等三角形()和相似三角形(),根據(jù)相似三角形的對應(yīng)邊成比例求得的值.

3)由(2)中相似三角形的性質(zhì)和等量代換推知.故.易得.由(2)知,,則.故,.根據(jù)題意得到:,所以該相似三角形的對應(yīng)邊成比例:.將相關(guān)線段的長度代入求t的值,所以

1

理由如下:∵,,

由旋轉(zhuǎn)的性質(zhì)知,

;

2)如圖,過點CMP于點G

,點MAB的中點,

,

中,

,

設(shè),則,

中,

3)如圖,由(2)知.則

,

由(2)知,,則

,

,即

解得,(舍去).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=6cm,BC=8cm,DE分別是AC、AB的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為1cm/s;同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s,當(dāng)點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t0t4s.解答下列問題:

1)當(dāng)t為何值時,以點EP、Q為頂點的三角形與ADE相似?

2)當(dāng)t為何值時,EPQ為等腰三角形?(直接寫出答案即可);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為2,以點A為圓心,1為半徑作圓,EA上的任意一點,將點E繞點D按逆時針方向旋轉(zhuǎn)90°,得到點F,連接AF,AF的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,ABACBC4,點DAC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點A1,與y軸交于點A2,過點A1x軸的垂線交直線于點B1,過點A1A1B1的垂線交y軸于點B2,此時點B2與原點O重合,連接A2B1x軸于點C1,得到第1;過點A2y軸的垂線交l2于點B3,過點B3y軸的平行線交l1于點A3,連接A3B2A2B3交于點C2,得到第2……按照此規(guī)律進(jìn)行下去,則第2019的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點(P不與點B、D重合),PEBC于點E,PFCD于點F,連接EF給出下列五個結(jié)論:APEF;APEF僅有當(dāng)DAP45°67.5°時,APD是等腰三角形;④∠PFEBAPPDEC.其中有正確有(  )個.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖1,在等邊ABC中,AB4,點D、E分別為邊BCAB上的點,連結(jié)ADDE,若ADE60°,BD3,求BE的長.

(拓展)如圖2,在ABD中,AB4,點E為邊AB上的點,連結(jié)DE,若ADEABD45°,若DB3 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD12cm,CD6cm,EAD上一點,且BEBC,CECD,則DE__cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為A(-3,-3),此拋物線交x軸于O、 B兩點.

(1)求此拋物線的解析式.

(2)求△AOB的面積 .

(3)若拋物線上另有點P滿足S△POB=S△AOB,請求出P坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案