(2003•煙臺(tái))如圖,△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,若BF=AC,則∠ABC的大小是( )

A.40°
B.45°
C.50°
D.60°
【答案】分析:先利用AAS判定△BDF≌△ADC,從而得出BD=DA,即△ABD為等腰直角三角形.所以得出∠ABC=45°.
解答:解:∵AD⊥BC于D,BE⊥AC于E
∴∠BEA=∠ADC=90°.
∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE
∴∠FBD=∠FAE
在△BDF和△ADC中,
∴△BDF≌△ADC(AAS)
∴BD=AD
∴∠ABC=∠BAD=45°
故選B.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2003•煙臺(tái))如圖,AB為半圓的直徑,O為圓心,AB=6,延長(zhǎng)BA到F,使FA=AB,若P為線段AF上的一個(gè)動(dòng)點(diǎn)(不與A重合),過(guò)P點(diǎn)作半圓的切線,切點(diǎn)為C,過(guò)B點(diǎn)作BE⊥PC交PC的延長(zhǎng)線于E,設(shè)AC=x,AC+BE=y,求y與x的函數(shù)關(guān)系式及x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2003•煙臺(tái))如圖,AB為半圓的直徑,O為圓心,AB=6,延長(zhǎng)BA到F,使FA=AB,若P為線段AF上的一個(gè)動(dòng)點(diǎn)(不與A重合),過(guò)P點(diǎn)作半圓的切線,切點(diǎn)為C,過(guò)B點(diǎn)作BE⊥PC交PC的延長(zhǎng)線于E,設(shè)AC=x,AC+BE=y,求y與x的函數(shù)關(guān)系式及x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:解答題

(2003•煙臺(tái))如圖,AB為半圓的直徑,O為圓心,AB=6,延長(zhǎng)BA到F,使FA=AB,若P為線段AF上的一個(gè)動(dòng)點(diǎn)(不與A重合),過(guò)P點(diǎn)作半圓的切線,切點(diǎn)為C,過(guò)B點(diǎn)作BE⊥PC交PC的延長(zhǎng)線于E,設(shè)AC=x,AC+BE=y,求y與x的函數(shù)關(guān)系式及x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•煙臺(tái))如圖1,AB是⊙O的直徑,AC是弦,直線CD切⊙O于點(diǎn)C,AD⊥CD,垂足為D.
(1)求證:AC2=AB•AD;
(2)若將直線CD向上平移,交⊙O于C1、C2兩點(diǎn),其它條件不變,可得到圖2所示的圖形,試探索AC1、AC2、AB、AD之間的關(guān)系,并說(shuō)明理由;
(3)把直線C1D繼續(xù)向上平移,使弦C1C2與直徑AB相交(交點(diǎn)不與A、B重合),其它條件不變,請(qǐng)你在圖3中畫(huà)出變化后的圖形,標(biāo)好相應(yīng)字母,并試著寫(xiě)出與(2)相應(yīng)的結(jié)論,判斷你的結(jié)論是否成立?若不成立,請(qǐng)說(shuō)明理由;若成立,請(qǐng)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•煙臺(tái))如圖,是某城市部分街道示意圖,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲、乙兩人同時(shí)從B站乘車(chē)到F站,甲乘1路車(chē),路線是B?A?E?F;乙乘2路車(chē),路線是B?D?C?F,假設(shè)兩車(chē)速度相同,途中耽誤時(shí)間相同,那么誰(shuí)先到達(dá)F站,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案