(2009•安溪縣質(zhì)檢)若實(shí)數(shù)m,n滿足|m+2|+(n-3)2=0,則m-n=   
【答案】分析:根據(jù)非負(fù)數(shù)的性質(zhì)可求出m、n的值,進(jìn)而可求出它們的差.
解答:解:∵實(shí)數(shù)m,n滿足|m+2|+(n-3)2=0,∴m+2=0,n-3=0,即:m=-2,n=3;
故m-n=-2-3=-5.
點(diǎn)評(píng):初中階段有三種類(lèi)型的非負(fù)數(shù):(1)絕對(duì)值;(2)偶次方;(3)二次根式(算術(shù)平方根).當(dāng)它們相加和為0時(shí),必須滿足其中的每一項(xiàng)都等于0.根據(jù)這個(gè)結(jié)論可以求解這類(lèi)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)已知拋物線的頂點(diǎn)為A(0,1).
(1)求m的值;
(2)如圖1,已知點(diǎn)B(0,2),P是第一象限內(nèi)拋物線上的任意一點(diǎn),過(guò)P作PQ⊥x軸,垂足為Q.
①求證:PB2=PQ2;(只對(duì)PQ>OB的情況進(jìn)行證明,對(duì)PQ≤OB同理可證)
②如圖2,已知點(diǎn)C(1,3),試探究在拋物線上是否存在點(diǎn)M,使得MB+MC取得最小值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)某人要做一批地磚,每塊地磚(如圖1)是邊長(zhǎng)為0.4米的正方形ABCD,點(diǎn)E、F分別在邊BC和CD上,若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.
(1)直接判定四邊形EFGH的形狀;
(2)設(shè)CE=x米.
①用x的代數(shù)式表示四邊形AEFD的面積;
②若△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格依次為120元、80元、40元.試問(wèn)x取何值時(shí),這批地磚的材料費(fèi)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若DE=4,AD=6,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)如圖,已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(-1,0)、B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)設(shè)線段AB的垂直平分線交x軸于點(diǎn)C,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•安溪縣質(zhì)檢)下列說(shuō)法正確的是( )
A.“明天降雨的概率是80%”表示明天有80%的時(shí)間降雨
B.“拋一枚硬幣正面朝上的概率是0.5”表示每拋硬幣10次有5次出現(xiàn)正面朝上
C.“彩票中獎(jiǎng)的概率是1%”表示買(mǎi)100張彩票一定會(huì)中獎(jiǎng)
D.不可能事件是確定事件

查看答案和解析>>

同步練習(xí)冊(cè)答案