如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由.
(2)AD與BC的位置關系如何?為什么?
分析:(1)利用鄰補角的定義以及平行線的判定得出即可;
(2)利用角平分線的性質以及平行線的性質進而得出∠FDA=∠BCF,進而得出答案.
解答:解:(1)AE∥FC,
理由:∵∠1+∠2=180°,∠2+∠BDC=180°,
∴∠BDC=∠1,
∴AE∥FC(同位角相等,兩直線平行);

(2)AD∥BC,
理由:∵DA平分∠BDF,
∴∠FDA=∠ADB,
∵AE∥FC,
∴∠FDA=∠BAD,
∵∠DAE=∠BCF,
∴∠FDA=∠BCF,
∴AD∥BC(同位角相等,兩直線平行).
點評:此題主要考查了平行線的判定與性質,熟練掌握平行線的判定是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案