【題目】某商場(chǎng)開業(yè),為了活躍氣氛,用紅、黃、藍(lán)三色均分的轉(zhuǎn)盤設(shè)計(jì)了兩種抽獎(jiǎng)方案,凡來商場(chǎng)消費(fèi)的顧客都可以選擇一種抽獎(jiǎng)方案進(jìn)行抽獎(jiǎng)(若指針恰好停在分割線上則重轉(zhuǎn)).
方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,指針落在紅色區(qū)域可領(lǐng)取一份獎(jiǎng)品;
方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,指針落在不同顏色區(qū)域可領(lǐng)取一份獎(jiǎng)品.
(1)若選擇方案一,則可領(lǐng)取一份獎(jiǎng)品的概率是 ;
(2)選擇哪個(gè)方案可以使領(lǐng)取一份獎(jiǎng)品的可能性更大?請(qǐng)用列表法或畫樹狀圖法說明理由.
【答案】(1);(2)方案二獲得獎(jiǎng)品的可能更大,理由詳見解析
【解析】
(1)直接利用概率公式求解可得;
(2)列表得出所有等可能結(jié)果,從中找到指針落在不同顏色區(qū)域的結(jié)果數(shù),再根據(jù)概率公式計(jì)算,比較大小即可得.
解:(1)若選擇方案一,則可領(lǐng)取一份獎(jiǎng)品的概率是,
故答案為:;
(2)方案二中出現(xiàn)的可能性如下表所示:
共有9種不同的情況,其中指針落在不同顏色區(qū)域的有6種結(jié)果,
∴可領(lǐng)取一份獎(jiǎng)品的概率為=,
∵<,
∴方案二獲得獎(jiǎng)品的可能更大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點(diǎn)坐標(biāo)為,且與軸交于原點(diǎn)和點(diǎn).對(duì)稱軸與軸交點(diǎn)為.
(1)求拋物線的解析式;
(2)若點(diǎn)在拋物線上,且橫坐標(biāo)為,在拋物線對(duì)稱軸上找一點(diǎn),使得與的差最大,求此時(shí)點(diǎn)的坐標(biāo);
(3)若點(diǎn)在拋物線的對(duì)稱軸上,且縱坐標(biāo)為.探究:在拋物線上是否存在點(diǎn)使得四點(diǎn)共圓?若存在求出點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的頂點(diǎn)為,與軸的一個(gè)交點(diǎn)在點(diǎn)和之間,其部分圖象如圖所示,則以下結(jié)論:①;②;③;④方程以有兩個(gè)的實(shí)根,其中正確的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,OA=6,OB=8,動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5),以P為圓心,PA長為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、CQ.
⑴ 當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),求t的值;
⑵ 若△ACQ是等腰三角形,求t的值;
⑶ 若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC邊OA,OC分別在x軸,y的正半軸上,且OA=8,OC=6,連接AC,點(diǎn)D為AC中點(diǎn),點(diǎn)E從點(diǎn)C出發(fā)以每秒1個(gè)單位長度運(yùn)動(dòng)到點(diǎn)O停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<6),連接DE,作DF⊥DE交OA于點(diǎn)F,連接EF.
(1)當(dāng)t的值為 時(shí),四邊形DEOF是矩形;
(2)用含t的代數(shù)式表示線段OF的長度,并說明理由;
(3)當(dāng)△OEF面積為時(shí),請(qǐng)直接寫出直線DE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖1是兒童寫字支架示意圖,由一面黑板,一面白板和一塊固定支架的托盤組成,圖2是它的一個(gè)左側(cè)截面圖,該支架是個(gè)軸對(duì)稱圖形,∠BAC是可以轉(zhuǎn)動(dòng)的角,B,C、D,E和F,G是支架腰上的三對(duì)對(duì)稱點(diǎn),是用來卡住托盤以固定支架的。已知AB=AC=60cm,BD=CE=DF=EG=10cm。
(1)當(dāng)托盤固定在BC處時(shí),∠BAC=32,求托盤BC的長;(精確到0.1)
(2)當(dāng)托盤固定在DE處時(shí),這是兒童看支架的最佳角度,求此時(shí)∠BAC的度數(shù)。
(參考數(shù)據(jù):sin32=0.53,cos32=0.85,sin16=0.28
sin20=0.34,sin25=0.42。)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),AC⊥AB,且AB=AC,直線BC交軸于點(diǎn)D,拋物線經(jīng)過點(diǎn)A,B,D.
(1)求直線BC和拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是直線BD下方的拋物線上一點(diǎn),求△PCD面積的最大值,以及△PCD面積取得最大值時(shí),點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P的坐標(biāo)為(2)小題中,△PCD的面積取得最大值時(shí)對(duì)應(yīng)的坐標(biāo).平面內(nèi)存在直線l,使點(diǎn)B,D,P到該直線的距離都相等,請(qǐng)直接寫出所有滿足條件的直線l的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了進(jìn)一步提高居民珍惜誰、保護(hù)水和水憂患意識(shí),提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機(jī)抽取100戶,調(diào)查他們家庭每季度的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖和表:
用戶季度用水量頻數(shù)分布表
平均用水量(噸) | 頻數(shù) | 頻率 |
3<x≤6 | 10 | 0.1 |
6<x≤9 | m | 0.2 |
9<x≤12 | 36 | 0.36 |
12<x≤15 | 25 | n |
15<x≤18 | 9 | 0.09 |
請(qǐng)根據(jù)上面的統(tǒng)計(jì)圖表,解答下列問題:
(1)在頻數(shù)分布表中:m=_______,n=________;
(2)根據(jù)題中數(shù)據(jù)補(bǔ)全頻數(shù)直方圖;
(3)如果自來水公司將基本季度水量定為每戶每季度9噸,不超過基本季度用水量的部分享受基本價(jià)格,超出基本季度用水量的部分實(shí)行加價(jià)收費(fèi),那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價(jià)格?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com