【題目】、如圖,大樓AB的高為16米,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°.其中AC兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高度.

【答案】

【解析】

首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BEDRt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC

解:作BE⊥CDE

可得Rt△BED和矩形ACEB

則有CE=AB=16AC=BE

Rt△BED中,∠DBE=45°DE=BE=AC

Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC

∵16+DE=DC,∴16+AC=AC,解得:AC==DE

所以塔CD的高度為()米,

答:塔CD的高度為()米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點PBC邊上,將CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cosADF的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,以等邊ABC的邊BC為直徑作⊙O,分別交AB,AC于點D,E,過點DDFACAC于點F.

(1)求證:DF是⊙O的切線;

2)若等邊ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子里裝有6個白色乒乓球和若干個紅色的乒乓球,這些球除顏色外其余均相同,攪拌均勻后,從這個袋子里隨機摸出一個乒乓球,是紅球的概率是

1)求該袋子中紅球的個數(shù);

2)小亮取出3個白色乒乓球分別表上12,3個數(shù)字,裝入另一個不透明的袋子里攪拌均勻,第一次從袋子里摸出一個球并記錄下該球上的數(shù)字,重新放回袋子中攪拌均勻,第二次從袋子中摸出一個球并記錄下該球上的數(shù)字,求這兩個數(shù)字之積是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD,兩條對角線相交于O點,過點OAC的垂線EF,分別交ADBCE、F點,連結(jié)CE,若OCcm,CD4cm,則DE的長為(

A.cmB.5cmC.3cmD.2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點A(1,0),B(4,0),交y軸于點C;

1)求拋物線的解析式(用一般式表示);

2)點Dy軸右側(cè)拋物線上一點,是否存在點D使SABC=SABD?若存在,請求出點D坐標;若不存在,請說明理由;

3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為點,與軸分別交于、兩點(點在點的左側(cè)),與軸交于點

1)直接寫出點的坐標為________;

2)如圖,若、兩點在原點的兩側(cè),且,四邊形為正方形,其中頂點、軸上,位于拋物線上,求點的坐標;

3)若線段,點為反比例函數(shù)與拋物線在第一象限內(nèi)的交點,設的橫坐標為,當時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(﹣3,0),(0,﹣3).

1)求拋物線的表達式.

2)已知點(m,k)和點(nk)在此拋物線上,其中mn,請判斷關(guān)于t的方程t2+mt+n0是否有實數(shù)根,并說明理由.

查看答案和解析>>

同步練習冊答案