精英家教網(wǎng)如圖,在邊長(zhǎng)為10的正方形ABCD中,內(nèi)接六個(gè)大小相同的正方形,P、Q、M、N是落在大正方形邊上的頂點(diǎn).則這六個(gè)小正方形的面積和是
 
分析:如圖,過(guò)點(diǎn)Q作QF⊥AD,垂足為F,可以得到△BQP∽△FQN,再根據(jù)相似三角形對(duì)應(yīng)邊成比例的性質(zhì)列式求解即可得到QB和DN,根據(jù)勾股定理可求QN的長(zhǎng),從而求出六個(gè)小正方形的面積和.
解答:精英家教網(wǎng)解:如圖所示:
∵正方形ABCD邊長(zhǎng)為10,
∴∠A=∠B=90°,AB=10,
過(guò)點(diǎn)Q作QF⊥AD,垂足為F,則∠4=∠5=90°,
∴四邊形AFQB是矩形,
∴∠2+∠3=90°,QF=AB=10,
∵六個(gè)大小完全一樣的小正方形如圖放置在大正方形中,
∴∠1+∠2=90°,
∴∠1=∠PQB,
∴△BQP∽△FQN,
QB
QF
=
QP
QN
=
1
5

QB
10
=
1
5
,
∴QB=2.
∴AF=2.
同理DN=2.
∴NF=AD-DN-AF=6.
∴QN=
QF2+FN2
=
102+62
=2
34
,
∴小正方形的邊長(zhǎng)為
2
34
5
,
則六個(gè)小正方形的面積和是6×(
2
34
5
2=
816
25

故答案為:
816
25
點(diǎn)評(píng):考查了面積及等積變換,本題主要利用相似三角形的判定和相似三角形對(duì)應(yīng)邊成比例的性質(zhì)和勾股定理,綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,在邊長(zhǎng)為1的小正方形組成的10×10網(wǎng)格中(我們把組成網(wǎng)格的小正方形的頂點(diǎn)稱為格點(diǎn)),四邊形ABCD在直線l的左側(cè),其四個(gè)頂點(diǎn)A、B、C、D分別在網(wǎng)格的格點(diǎn)上.
(1)請(qǐng)你在所給的網(wǎng)格中畫(huà)出四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關(guān)于直線l對(duì)稱,其中點(diǎn)A′、B′、C′、D′分別是點(diǎn)A、B、C、D的對(duì)稱點(diǎn);
(2)在(1)的條件下,結(jié)合你所畫(huà)的圖形,直接寫(xiě)出線段A′B′的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海)如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)都在格點(diǎn)上,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,則頂點(diǎn)A所經(jīng)過(guò)的路徑長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.(直接填寫(xiě)答案)
(1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)的坐標(biāo)為
(-3,-2)
(-3,-2)

(2)點(diǎn)A1的坐標(biāo)為
(-2,3)
(-2,3)
;
(3)在旋轉(zhuǎn)過(guò)程中,點(diǎn)B經(jīng)過(guò)的路徑為弧BB1,那么弧BB1的長(zhǎng)為
10
π
2
10
π
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:兩個(gè)直角三角形,若一個(gè)三角形的兩條直角邊分別與另一個(gè)三角形的兩條直角邊相等,我們就說(shuō)這兩個(gè)直角三角形是“同胞直角三角形”.如圖,在邊長(zhǎng)為10的正方形中有兩個(gè)直角三角形,當(dāng)直角三角形①和直角三角形②是同胞直角三角形時(shí),a的值是
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案