【題目】如圖,數(shù)軸上標出的所有點中,任意相鄰兩點間的距離相等,已知點A表示﹣12,點G表示6.
(1)表示原點的點是 ,點C表示的數(shù)是 ;
(2)數(shù)軸上有兩點M、N,點M到點D的距離為,點N到點D的距離為4,求點M,N之間的距離;
(3)點P為數(shù)軸上一點,且表示的數(shù)是整數(shù),點P到點A的距離與點P到點G的距離之和為18,則這樣的點P有 個.
【答案】(1)點E,﹣6(2)點M,N之間的距離為4﹣或4+;(3)19.
【解析】
(1)點A表示﹣12,點G表示6,可求出AG的長,除以6可得每段的長,從而可得原點及點C表示的數(shù);
(2)由(1)及已知條件可得點D表示的數(shù),根據(jù)點M到點D的距離為,點N到點D的距離為4,可求得點M與點N表示的數(shù),再由數(shù)軸上右邊的數(shù)總比左邊的大,用右邊的數(shù)減去左邊的數(shù),可得MN的值;
(3)AG=6﹣(﹣12)=18,點P到點A的距離與點P到點G的距離之和為18,問題可解.
解:(1)∵點A表示﹣12,點G表示6
∴AG=6﹣(﹣12)=18
∵數(shù)軸上標出的所有點中,任意相鄰兩點間的距離相等
∴18÷6=3
∴相鄰兩點間的距離為3
∴6﹣2×3=0,﹣12+3×2=﹣6
表示原點的點是點E,點C表示的數(shù)是﹣6.
故答案為:點E,﹣6.
(2)∵點D表示的數(shù)為﹣3,點M到點D的距離為,點N到點D的距離為4
點M表示的數(shù)為:﹣3﹣或﹣3+,
點N表示的數(shù)為:﹣7或1
∴點M,N之間的距離為:
①﹣3﹣﹣(﹣7)=4﹣,
②﹣3+﹣(﹣7)=4+,
③1﹣(﹣3﹣)=4+,
④1﹣(﹣3+)=4﹣,
∴綜上可得點M,N之間的距離為=4﹣或4+.
(3)∵AG=6﹣(﹣12)=18,點P到點A的距離與點P到點G的距離之和為18
∴P為AG之間的所有整數(shù),共有19個
故答案為:19.
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律.例如:若數(shù)軸上點A、點B表示的數(shù)分別為a、b,則A,B兩點之間的距離AB=|a﹣b|,線段AB的中點表示的數(shù)為.請利用以上結論解決下列問題.
(1)如圖1,數(shù)軸上點A表示的數(shù)為﹣2,點B表示的數(shù)為10,則A、B兩點間的距離AB= ,線段AB的中點表示的數(shù)為 ;
(2)數(shù)軸上另有一動點P從點A出發(fā),以每秒4個單位長度的速度沿數(shù)軸向右勻速運動,點Q是線段BP的中點.設運動時間為t秒:
①當t=2時,求此時點Q表示的數(shù);
②如圖2,點P運動至B點右側,M是線段AQ的中點,若B恰好是QM的中點,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,點O是AC上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請猜測OE與OF的大小關系,并說明你的理由;
(2)點O運動到何處時,四邊形AECF是矩形?寫出推理過程;
(3)點O運動到何處且△ABC滿足什么條件時,四邊形AECF是正方形?(寫出結論即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩地相距20,甲乙兩人沿同一條路線從地到地,如圖的圖象反映的是二人行進路程()與行進時間()之間的關系,有下列說法:①甲始終是勻速行進,乙的行進不是勻速的;②甲用了5個小時到達目的地;③乙比甲先出發(fā)1小時;④甲在出發(fā)4小時后被乙追上.在這些說法中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是反比例函數(shù) (x>0)圖象上的任意一點,過點A作AB∥x軸,交另一個反比例函數(shù) (k<0,x<0)的圖象于點B,且S△AOB=5.
(1) k的值為_______;
(2) 若點A的橫坐標是1,
①求∠AOB的度數(shù);
②在y2的圖象上找一點P(異于點B), 使S△AOP=S△AOB,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個構造完全相同(除所標數(shù)字外)的轉盤A、B.
(1)單獨轉動A盤,指向奇數(shù)的概率是 ;
(2)小紅和小明做了一個游戲,游戲規(guī)定,轉動兩個轉盤各一次,兩次轉動后指針指向的數(shù)字之和為奇數(shù)則小紅獲勝,數(shù)字之和為偶數(shù)則小明獲勝,請用樹狀圖或列表說明誰獲勝的可能性大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖與計算:
在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點,的坐標分別為,.
(1)請在如圖所示的網(wǎng)格平面內作出平面直角坐標系;
(2)請作出關于軸對稱的;
(3)直接寫出的面積及點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
如圖1,點A為線段BC外一動點,且,填空:當點A位于______時,線段AC的長取得最大值,且最大值為______用含的式子表示.
問題探究
點A為線段BC外一動點,且,如圖2所示,分別以為邊,作等邊三角形ABD和等邊三角形ACE,連接,找出圖中與BE相等的線段,請說明理由,并直接寫出線段BE長的最大值.
問題解決:
如圖3,在平面直角坐標系中,點A的坐標為,點B的坐標為,點P為線段AB外一動點,且,求線段AM長的最大值及此時點P的坐標.
如圖4,在四邊形ABCD中, ,若對角線于點D,請直接寫出對角線AC的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.
B:①求線段DE的長;
②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com