如圖,有一塊三角形土地,它的底邊BC=100米,高AH=80米,某單位要沿著地邊BC修一座底面是矩形DEFG的大樓,當(dāng)這座大樓的地基面積最大時.這個矩形的長和寬各是多少?

【答案】分析:兩三角形相似,對應(yīng)高之比等于相似比.利用此性質(zhì)即可解答.
解答:解:∵DG∥BC
∴△ADG∽△ABC
它們的對應(yīng)高線比等于對應(yīng)線段的比,

設(shè)AM=x,那么DE=MH=AH-AM=80-x

∴DG=x
∴S四邊形DEFG=DG•DE=(80-x)•x=(-x2+80x-1600)+×1600=-(x-40)2+2000
當(dāng)x=40時,S取最大值
∴DE=40,DG=50
∴矩形的長和寬分別是50m和40m.
點評:此題既要利用相似三角形的性質(zhì),又要利用二次函數(shù)求最大值,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB邊上的高h;

(2)設(shè)DN=x,當(dāng)x取何值時,水池DEFN的面積最大?

(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h;
(2)設(shè)DN=x,當(dāng)x取何值時,水池DEFN的面積最大?
(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省沭陽銀河學(xué)校九年級下學(xué)期質(zhì)量檢測數(shù)學(xué)卷 題型:解答題

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h;
(2)設(shè)DN=x,當(dāng)x取何值時,水池DEFN的面積最大?
(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省九年級下學(xué)期質(zhì)量檢測數(shù)學(xué)卷 題型:解答題

如圖,在直徑為AB的一塊半圓形土地上,畫出一塊三角形區(qū)域,使三角形的一邊為AB,頂點C在半圓上,其它兩邊長分別為6cm和8cm,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB邊上的高h;

(2)設(shè)DN=x,當(dāng)x取何值時,水池DEFN的面積最大?

(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85m處有一棵大樹,則這棵大樹是否位于最大矩形的邊上?如果在,為了保護大樹,請你設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開大樹。

 

查看答案和解析>>

同步練習(xí)冊答案