【題目】(1)問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:ADBC=APBP.
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.
(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:
如圖3,在△ABD中,AB=12,AD=BD=10.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿(mǎn)足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.
【答案】(1)證明見(jiàn)解析;(2)結(jié)果成立,理由見(jiàn)解析;(3)t的值為2秒或10秒.
【解析】
試題分析:(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;
(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;
(3)過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=6,根據(jù)勾股定理可得DE=8,由題可得DC=DE=8,則有BC=10-8=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.
試題解析:(1)如圖1,
∵∠DPC=∠A=∠B=90°,
∴∠ADP+∠APD=90°,
∠BPC+∠APD=90°,
∴∠APD=∠BPC,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(2)結(jié)論ADBC=APBP仍成立;
證明:如圖2,∵∠BPD=∠DPC+∠BPC,
又∵∠BPD=∠A+∠APD,
∴∠DPC+∠BPC=∠A+∠APD,
∵∠DPC=∠A=θ,
∴∠BPC=∠APD,
又∵∠A=∠B=θ,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(3)如下圖,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,
∵AD=BD=10,AB=12,
∴AE=BE=6
∴DE==8,
∵以D為圓心,以DC為半徑的圓與AB相切,
∴DC=DE=8,
∴BC=10-8=2,
∵AD=BD,
∴∠A=∠B,
又∵∠DPC=∠A,
∴∠DPC=∠A=∠B,
由(1)(2)的經(jīng)驗(yàn)得ADBC=APBP,
又∵AP=t,BP=12-t,
∴t(12-t)=10×2,
∴t=2或t=10,
∴t的值為2秒或10秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A,C的坐標(biāo)分別為(-3,0),(0,3),對(duì)稱(chēng)軸直線x=-1交x軸于點(diǎn)E,點(diǎn)D為頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)K是直線AC下方的拋物線上一點(diǎn),且S△KAC=S△DAC求點(diǎn)K的坐標(biāo);
(3)如圖2若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),∠DPM=30°,DP⊥DM,則點(diǎn)P的線段AC上運(yùn)動(dòng)時(shí),D點(diǎn)不變,M點(diǎn)隨之運(yùn)動(dòng),求當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,E是邊BC上的動(dòng)點(diǎn),BF⊥AE交CD于點(diǎn)F,垂足為G,連結(jié)CG.下列說(shuō)法:①AG>GE;②AE=BF;③點(diǎn)G運(yùn)動(dòng)的路徑長(zhǎng)為π;④CG的最小值為-1.其中正確的說(shuō)法是 .(把你認(rèn)為正確的說(shuō)法的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若□×2xy=16x3y2,則□內(nèi)應(yīng)填的單項(xiàng)式是( )
A. 4x2y B. 8x3y2 C. 4x2y2 D. 8x2y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,運(yùn)算正確的是( 。
A.a6÷a3=a2B.(a3)2=a5C.2a+3a3=5a4D.3ab﹣2ba=ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),P為AB延長(zhǎng)線上一點(diǎn),且PC=PE.
(1)求AC、AD的長(zhǎng);
(2)試判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品的進(jìn)價(jià)為800元,標(biāo)價(jià)為1200元,由于該商品積壓,商店準(zhǔn)備打折銷(xiāo)售,但要保證利潤(rùn)率不低于20%,則最低可打( )
A. 8折 B. 8.5折 C. 7折 D. 6折
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com