精英家教網 > 初中數學 > 題目詳情
如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE等于( )

A.
B.
C.
D.
【答案】分析:根據圓周角定理得出的兩組相等的對應角,易證得△AEB∽△DEC,根據CD、AB的長,即可求出兩個三角形的相似比;設BE=x,則DE=5-x,然后根據相似比表示出AE、EC的長,連接BC,首先在Rt△BEC中,根據勾股定理求得BC的表達式,然后在Rt△ABC中,由勾股定理求得x的值,進而可求出DE的長.
解答:解法一:
∵∠D=∠A,∠DCA=∠ABD,
∴△AEB∽△DEC;
=;
設BE=2x,則DE=5-2x,EC=x,AE=2(5-2x);
連接BC,則∠ACB=90°;
Rt△BCE中,BE=2x,EC=x,則BC=x;
在Rt△ABC中,AC=AE+EC=10-3x,BC=x;
由勾股定理,得:AB2=AC2+BC2
即:72=(10-3x)2+(x)2,
整理,得4x2-20x+17=0,解得x1=+,x2=-
由于x<,故x=-
則DE=5-2x=2

解法二:連接OD,OC,AD,
∵OD=CD=OC
則∠DOC=60°,∠DAC=30°
又AB=7,BD=5,
∴AD=2,
在Rt△ADE中,∠DAC=30°,
所以DE=2
故選A.
點評:此題主要考查了圓周角定理、相似三角形的判定和性質、勾股定理的應用等知識;本題要特別注意的是BE、DE不是相似三角形的對應邊,它們的比不等于相似比,以免造成錯解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點A,E,D.
(1)設AB=x,CD=y,求y與x之間的函數關系式;
(2)如果CD=6,判斷四邊形ABCD的形狀;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,半圓O的直徑AD=12cm,AB、BC、CD分別與半圓O切于點A、E、D.
(1)線段AB、CD與BC之間有什么關系?并說明理由;
(2)設AB=x,CD=y,求y與x之間的函數關系式;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,半圓O的直徑AB=12cm,射線BM從與線段AB重合的位置起,以每秒6°的旋轉速度繞B點按順時針方向旋轉至BP的位置,BP交半圓于E,設旋轉時間為ts(0<t<15),
(1)求E點在圓弧上的運動速度(即每秒走過的弧長),結果保留π.
(2)設點C始終為
AE
的中點,過C作CD⊥AB于D,AE交CD、CB分別于G、F,過F作F精英家教網N∥CD,過C作圓的切線交FN于N.
求證:①CN∥AE;
②四邊形CGFN為菱形;
③是否存在這樣的t值,使BE2=CF•CB?若存在,求t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,半圓O的直徑為6cm,∠BAC=30°,則陰影部分的面積是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,半圓O的直徑AB=20,將半圓O繞點B順針旋轉45°得到半圓O′,與AB交于點P.
(1)求AP的長.
(2)求圖中陰影部分的面積(結果保留π).

查看答案和解析>>

同步練習冊答案