【題目】已知點(diǎn)Aa﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點(diǎn)A關(guān)于拋物線對稱軸的對稱點(diǎn)坐標(biāo)為(  )

A. ﹣3,7 B. ﹣1,7 C. ﹣410 D. 0,10

【答案】D

【解析】試題解析∵點(diǎn)Aa-2b2-4ab)在拋物線y=x2+4x+10上,

a-2b2+4×a-2b+10=2-4ab

a2-4ab+4b2+4a-8b+10=2-4ab,

a+22+4b-12=0

a+2=0,b-1=0,

解得a=-2,b=1,

a-2b=-2-2×1=-4,

2-4ab=2-4×-2×1=10,

∴點(diǎn)A的坐標(biāo)為(-410),

∵對稱軸為直線x=-=-2

∴點(diǎn)A關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)為(0,10).

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AC平分∠BADCEAB,∠B+D=180°,求證:AE=AD+BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將二次函數(shù)y=x2-m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1,另有一次函數(shù)y=x+b的圖象記為y2,則以下說法:

①當(dāng)m=1,且y1y2恰好有三個交點(diǎn)時b有唯一值為1;

②當(dāng)b=2,且y1y2恰有兩個交點(diǎn)時,m>4或0<m;

③當(dāng)m=-b時,y1y2一定有交點(diǎn);

④當(dāng)m=b時,y1y2至少有2個交點(diǎn),且其中一個為(0,m).

其中正確說法的序號為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.(1)判斷直線CD⊙O的位置關(guān)系,并說明理由.

2)過點(diǎn)B⊙O的切線BE交直線CD于點(diǎn)E,若AC=2⊙O的半徑是3,求∠BEC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系的圖象如圖所示.

1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

2)當(dāng)生產(chǎn)這種產(chǎn)品每噸的成本為7萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形.若學(xué)校位置的坐標(biāo)為A(1,2),解答以下問題:

(1)請?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);

(2)若體育館位置的坐標(biāo)為C(3,3),請?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,這種臺燈的售價每上漲1元,其銷量就減少10個,

1)為了實(shí)現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應(yīng)定為多少元?

2)當(dāng)售價定為多少元時,其銷售利潤達(dá)到最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請按照研究問題的步驟依次完成任務(wù).

(問題背景)

1)如圖1的圖形我們把它稱為“8字形, 請說理證明∠A+B=C+D

(簡單應(yīng)用)

2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)

(問題探究)

3)如圖3,直線AP平分∠BAD的外角∠FADCP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為

(拓展延伸)

4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=CAB,∠CDP=CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為 (用x、y表示∠P ;

5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關(guān)系,直接寫出結(jié)論

查看答案和解析>>

同步練習(xí)冊答案