【題目】某數(shù)學小組在數(shù)學課外活動中,研究三角形和正方形的性質時,做了如下探究:
在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),
以AD為邊在AD右側作正方形ADEF,連接CF.
(1).如圖1,當點D在線段BC上時,
①.BC與CF的位置關系為:________________________________.
②.BC,CD,CF之間的數(shù)量關系為:_______________________________.
(2).如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,
請給予證明;若不成立,請你寫出正確結論再給予證明.
(3).如圖3,將圖2中的 AB=AC改變成AB=kAC,正方形ADEF改成矩形ADEF,且AD=kAF,其它條件不變 ,猜想線段BD與CF之間的關系,說明理由.
【答案】(1) ①BC與CF的位置關系為:BC⊥CF ;②BC,CD,CF之間的數(shù)量關系為:BC=CF+CD,證明見解析;(2)結論①成立,②不成立,BC,CD,CF之間的數(shù)量關系為BC=CD-CF或CD=BC+CF,證明見解析;(3).數(shù)量關系BD=kCF,位置關系BC⊥CF,證明見解析.
【解析】
(1)利用正方形邊相等,等腰三角形,證明ABD 和 AFC全等,再證明∠FCB=90°;
(2)解題方法參考(1);
(3)參考(1)題原理,證明ABD 和 AFC相似,可以證明BD=kCF,
解:(1)AB=AC,AD=AF,
∠BAD+∠DAC=∠FAC+∠DAC,
∠BAD=∠CAF,
ABD AFC,
∠ABD=∠ACF.
.
BC⊥CF
C=BC+CF.
(2)AB=AC,AD=AF,
∠BAD+∠DAC=∠FAC+∠DAC,
∠BAD=∠CAF,
ABD AFC,
∠ADB=∠AFC.
. BC⊥CF
結論①成立,②不成立,
CD=BC+CF.
(3)AB=kAC,AD=kAF,
∠BAD+∠DAC=∠FAC+∠DAC,
∠BAD=∠CAF,
ABD AFC,
BD=kCF.
∠ADB=∠AFC.
.
BC⊥CF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADB+∠EDC=120°.
(1)求證:△ABD∽△DCE;
(2)若CD=12,CE=3,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,點E,F分別是BC,CD的中點,連結BF,DE,則圖中陰影部分的面積是________cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小夏同學從家到學校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時 頻數(shù) 公交車路線 | 總計 | ||||
59 | 151 | 166 | 124 | 500 | |
43 | 57 | 149 | 251 | 500 |
據(jù)此估計,早高峰期間,乘坐線路“用時不超過35分鐘”的概率為__________,若要在40分鐘之內到達學校,應盡量選擇乘坐__________(填或)線路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點.設AM的長為x,則x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三個頂點都在邊長為1的小正方形組成的網(wǎng)格的格點上,以點O為原點建立直角坐標系,回答下列問題:
(1)將△ABC先向上平移5個單位,再向右平移1個單位得到△A1B1C1,畫出△A1B1C1,并直接寫出A1的坐標 ;
(2)將△A1B1C1繞點(0,﹣1)順時針旋轉90°得到△A2B2C2,畫出A2B2C2;
(3)觀察圖形發(fā)現(xiàn),A2B2C2是由△ABC繞點 順時針旋轉 度得到的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=與y=的圖象上分別有一點A,B,且AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,若矩形ABCD的面積為8,則b﹣a=( 。
A.8B.﹣8C.4D.﹣4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面內容,并按要求解決問題:
問題:“在平面內,已知分別有2個點,3個點,4個點,5個點,…,個點,其中任意三個點都不在同一條直線上經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線?”
探究:為了解決這個問題,希望小組的同學們,設計了如下表格進行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點的一條直線)
點數(shù) | 2 | 3 | 4 | 5 | … | |
示意圖 | … | |||||
直線條數(shù) | 1 | … |
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結論:當平面內有個點時,直線條數(shù)為______;
(2)若某同學按照本題中的方法,共畫了28條直線,求該平面內有多少個已知點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出如下定義:對于⊙O的弦MN和⊙O外一點P(M,O,N三點不共線,且點P,O在直線MN的異側),當∠MPN+∠MON=180°時,則稱點P是線段MN關于點O的關聯(lián)點.圖1是點P為線段MN關于點O的關聯(lián)點的示意圖.
在平面直角坐標系xOy中,⊙O的半徑為1.
(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點中,是線段MN關于點O的關聯(lián)點的是 ;
(2)如圖3,M(0,1),N(,﹣),點D是線段MN關于點O的關聯(lián)點.
①∠MDN的大小為 ;
②在第一象限內有一點E(m,m),點E是線段MN關于點O的關聯(lián)點,判斷△MNE的形狀,并直接寫出點E的坐標;
③點F在直線y=﹣x+2上,當∠MFN≥∠MDN時,求點F的橫坐標x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com