如圖,在△ABC中,∠ABC=90°,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E,連接BE.
(1)若∠C=30°,求證:BE是△DEC外接圓的切線;
(2)若BE=數(shù)學(xué)公式,BD=1,求△DEC外接圓的直徑.

(1)證明:∵DE垂直平分AC,
∴∠DEC=90°,AE=CE,
∴DC為△DEC外接圓的直徑,
取DC的中點(diǎn)O,連結(jié)OE,如圖,
∵∠ABC=90°,
∴BE為Rt△ABC斜上的中線,
∴EB=EC,
∵∠C=30°,
∴∠EBC=30°,∠EOC=2∠C=60°,
∴∠BEO=90°,
∴OE⊥BE,
而BE為⊙O的半徑,
∴BE是△DEC外接圓的切線;

(2)解:∵BE為Rt△ABC斜上的中線,
∴AE=EC=BE=,
∴AC=2
∵∠ECD=∠BCA,
∴Rt△CED∽R(shí)t△CBA,
=,
而CB=CD+BD=CD+1,
=,
解得CD=2或CD=-3(舍去),
∴△DEC外接圓的直徑為2.
分析:(1)根據(jù)線段垂直平分線的性質(zhì)由DE垂直平分AC得∠DEC=90°,AE=CE,利用圓周角定理得到DC為△DEC外接圓的直徑;取DC的中點(diǎn)O,連結(jié)OE,根據(jù)直角三角形斜邊上的中線性質(zhì)得EB=EC,得∠C=∠EBC=30°,則∠EOC=2∠C=60°,可計(jì)算出∠BEO=90°,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)由BE為Rt△ABC斜上的中線得到AE=EC=BE=,易證得Rt△CED∽R(shí)t△CBA,則=,然后利用相似比可計(jì)算出△DEC外接圓的直徑CD.
點(diǎn)評(píng):本題考查了圓的切線的判定:過半徑的外端點(diǎn),與半徑垂直的直線為圓的切線.也考查了線段垂直平分線的性質(zhì)、直角三角形斜邊上的中線性質(zhì)以及三角形相似的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案