【題目】如圖1,在直角坐標(biāo)系中放入一個(gè)邊長AB長為3,BC長為5的矩形紙片ABCD,使得BC、AB所在直線分別與xy軸重合.將紙片沿著折痕AE翻折后,點(diǎn)D恰好落在x軸上,記為F

1)求折痕AE所在直線與x軸交點(diǎn)的坐標(biāo);

2)如圖2,過DDGAF,求DG的長度;

3)將矩形ABCD水平向右移動(dòng)n個(gè)單位,則點(diǎn)B坐標(biāo)為(n,0),其中n0.如圖3所示,連接OA,若△OAF是等腰三角形,試求點(diǎn)B的坐標(biāo).

【答案】(1)折痕AE所在直線與x軸交點(diǎn)的坐標(biāo)為(9,0);(23;(3)點(diǎn)B4,0)或B1,0).

【解析】

1)根據(jù)四邊形ABCD是矩形以及由折疊對(duì)稱性得出AFAD5,EFDE,進(jìn)而求出BF的長,即可得出E點(diǎn)的坐標(biāo),進(jìn)而得出AE所在直線與x軸交點(diǎn)的坐標(biāo);

2)判斷出DAG≌△AFB,即可得出結(jié)論;

3)分三種情況討論:若AOAF,OFFA,AOOF,利用勾股定理求出即可.

解:(1)∵四邊形ABCD是矩形,

ADCB5,ABDC3,∠D=∠DCB=∠ABC90°,

由折疊對(duì)稱性:AFAD5EFDE,

RtABF中,BF4,

CF1,

設(shè)ECx,則EF3x,

RtECF中,12+x2=(3x2

解得:x,

E點(diǎn)坐標(biāo)為:(5,),

∴設(shè)AE所在直線解析式為:yax+b,

,

解得:

AE所在直線解析式為:yx+3,

當(dāng)y0時(shí),x9,

故折痕AE所在直線與x軸交點(diǎn)的坐標(biāo)為:(9,0);

2)在DAGAFB

,

∴△DAG≌△AFB,

DGAB3;

3)分三種情況討論:

AOAF,

ABOF

BOBF4,

n4

B4,0),

OFFA,則n+45,

解得:n1,

B1,0),

AOOF,

RtAOB中,AO2OB2+AB2m2+9,

∴(n+42n2+9,

解得:nn0不合題意舍去),

綜上所述,若OAF是等腰三角形,n的值為n41

即點(diǎn)B40)或B1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,|x|表示x在數(shù)軸上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,我們可以把看作|x-0|,所以,|x- 3|就表示x在數(shù)軸上對(duì)應(yīng)的點(diǎn)到3的距離,|x1||x--1|就表示x在數(shù)軸上對(duì)應(yīng)的點(diǎn)到-1的距離,由上面絕對(duì)值的幾意義,解答下列問題:

(1) 當(dāng)|x-4||x2|有最小值時(shí),x的取值情況是 ;

(2) |x-3||x2 ||x6|的最小值是 ;

(3) 已知| x -1||x2 ||y-3||y4|10 2xy 的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,拋物線軸交于點(diǎn)A(-3,0),C(1,0),與軸交于點(diǎn)B.

(1)求此拋物線的解析式;

(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),過點(diǎn)P作軸的垂線,垂足交點(diǎn)為F,交直線AB于點(diǎn)E,作于點(diǎn)D.

①點(diǎn)P在什么位置時(shí),△PDE的周長最大,求出此時(shí)P點(diǎn)的坐標(biāo);

②連接PA,以PA為邊作正方形APMN,當(dāng)頂點(diǎn)M或N恰好落在拋物線對(duì)稱軸上時(shí),求出對(duì)應(yīng)的P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于⊙P及一個(gè)矩形給出如下定義:如果⊙P上存在到此矩形四個(gè)頂點(diǎn)距離都相等的點(diǎn),那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的頂點(diǎn)A的坐標(biāo)為(,),頂點(diǎn)CDx軸上,且OC=OD.

(1)當(dāng)⊙P的半徑為4時(shí),

①在P1,),P2,),P3,)中可以成為矩形ABCD的“等距圓”的圓心的是 ;

②如果點(diǎn)P在直線上,且⊙P是矩形ABCD的“等距圓”,求點(diǎn)P的坐標(biāo);

(2)已知點(diǎn)P軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點(diǎn),直接寫出點(diǎn)P的縱坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,學(xué)校組織學(xué)生去某景點(diǎn)游玩,甲旅行社說:“如果帶隊(duì)的一名老師購買全票,則學(xué)生享受半價(jià)優(yōu)惠”; 乙旅行社說:“所有人按全票價(jià)的六折優(yōu)惠”.已知全票價(jià)為a元,學(xué)生有x人,帶隊(duì)老師有1人.

(1)試用含a和x的式子表示甲、乙旅行社的收費(fèi);

(2)若有30名學(xué)生參加本次活動(dòng),請(qǐng)你為他們選擇一家更優(yōu)惠的旅行社.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李叔叔在“中央山水”買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,這套住宅的建筑平面(由四個(gè)長方形組成)如圖所示(圖中長度單位:米),請(qǐng)解答下問題:

1)用式子表示這所住宅的總面積;

2)若鋪1平方米地磚平均費(fèi)用120元,求當(dāng)x=6時(shí),這套住宅鋪地磚總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以BC為直徑的⊙OAC于點(diǎn)E,過點(diǎn)EEF⊥AB于點(diǎn)F,延長EFCB的延長線于點(diǎn)G,且∠ABG=2∠C.

(1)求證:EF⊙O的切線;

(2)若,⊙O的半徑是3,求AF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用1 000元購進(jìn)一批晨光套尺,很快銷售一空;商店又用1 500元購進(jìn)第二批該款套尺,購進(jìn)時(shí)單價(jià)是第一批的倍,所購數(shù)量比第一批多100套.

1)求第一批套尺購進(jìn)時(shí)單價(jià)是多少?

2)若商店以每套4元的價(jià)格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案