(2004•常州)已知一元二次方程x2-2x-1=0的兩個(gè)根是x1、x2,則x1+x2=    ,x1x2=    ,x12+x22=   
【答案】分析:首先要確定方程中a、b、c的值,然后根據(jù)兩根之積或兩根之和公式求進(jìn)行計(jì)算.
解答:解:由題意可知:a=1,b=-2,c=-1
由根與系數(shù)的關(guān)系可知:x1+x2=-=2,x1x2==-1,
x12+x22=(x1+x22-2x1x2=4-2×(-1)=6.
點(diǎn)評(píng):此題主要考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2004•常州)已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列5個(gè)條件:
①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC.
(1)從以上5個(gè)條件中任意選取2個(gè)條件,能推出四邊形ABCD是平行四邊形的有(用序號(hào)表示):如①與⑤、______;(直接在橫線上再寫出兩種)
(2)對(duì)由以上5個(gè)條件中任意選取2個(gè)條件,不能推出四邊形ABCD是平行四邊形的,請(qǐng)選取一種情形舉出反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2004•常州)已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列5個(gè)條件:
①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC.
(1)從以上5個(gè)條件中任意選取2個(gè)條件,能推出四邊形ABCD是平行四邊形的有(用序號(hào)表示):如①與⑤、______;(直接在橫線上再寫出兩種)
(2)對(duì)由以上5個(gè)條件中任意選取2個(gè)條件,不能推出四邊形ABCD是平行四邊形的,請(qǐng)選取一種情形舉出反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《一元二次方程》(03)(解析版) 題型:填空題

(2004•常州)已知一元二次方程x2-2x-1=0的兩個(gè)根是x1、x2,則x1+x2=    ,x1x2=    ,x12+x22=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•常州)已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列5個(gè)條件:
①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC.
(1)從以上5個(gè)條件中任意選取2個(gè)條件,能推出四邊形ABCD是平行四邊形的有(用序號(hào)表示):如①與⑤、______;(直接在橫線上再寫出兩種)
(2)對(duì)由以上5個(gè)條件中任意選取2個(gè)條件,不能推出四邊形ABCD是平行四邊形的,請(qǐng)選取一種情形舉出反例說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案