精英家教網(wǎng)如圖.在?ABCD中,若邊AB上的兩點(diǎn)E、F滿足AE=EF=FB.CE分別與DF、DB交于點(diǎn)M、N,則EM:MN:NC等于( 。
A、2:1:4B、4:3:5C、5:3:12D、5:4:12
分析:根據(jù)平行四邊形的性質(zhì)求證△MEF∽△MCD,利用AE=EF=FB求證3EM=MN+NC.同理求證△NEB∽△NCD,可得NC=4MN,進(jìn)而可得EM:MN:NC=
5
3
:1:4即可.
解答:解:∵ABCD是平行四邊形,AB∥CD,
∴∠MEF=∠MCD,∠MFE=∠MDC,
∵∠EMF=∠CMD,
∴△MEF∽△MCD,
∴EM:MC=EF:CD,
∵AE=EF=FB,
∴EF:AB=1:3,
∵AB=CD,
∴EM:MC=1:3,
EM
MC
=
EM
MN+NC
=
1
3
,
3EM=MN+NC,
同理△NEB∽△NCD,
∴EN:NC=EB:CD=2:3.
2NC=3EM+3MN=MN+NC+3MN.
NC=4MN.
∴MN:NC=1:4.
∴EM:MN:NC=
5
3
:1:4=5:3:12.
故選C.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)相似三角形的判定與性質(zhì),平行四邊形的性質(zhì)的理解和掌握,利用平行四邊形性質(zhì)分別求證△MEF∽△MCD,△NEB∽△NCD,是解答本題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案