【題目】如圖,點(diǎn)C是線段AB上一點(diǎn),D是線段CB的中點(diǎn),已知圖中所有的線段的長度之和為23,線段AC的長度與線段CB的長度都是正整數(shù),則線段AC長 .
【答案】3
【解析】解:設(shè)AC=y,CD=BD=x,則AC+CD+DB+AD+AB+CB=23,
即:y+x+x+(x+y)+(2x+y)+2x=23,
得:7x+3y=23,
因?yàn)榫段AC的長度與線段CB的長度都是正整數(shù),
所以可知x最大為3,
可知:x=3,y為小數(shù),不符合;
x=2,y=3,符合題意;
x=1,y為小數(shù),不符合.
所以AC=3,
所以答案是:3.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解兩點(diǎn)間的距離(同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個點(diǎn),間距求法亦如此.平面任意兩個點(diǎn),橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人要在規(guī)定的時間內(nèi)加工100個零件,則工作效率η與時間t之間的關(guān)系中,下列說法正確的是( )
A.數(shù)100和η,t都是變量
B.數(shù)100和η都是常量
C.η和t是變量
D.數(shù)100和t都是常量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖線段AB=9,C、D、E分別為線段AB(端點(diǎn)A、B除外)上順次三個不同的點(diǎn),圖中所有的線段和等于46,則下列結(jié)論一定成立的是( )
A.CD=3
B.DE=2
C.CE=5
D.EB=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中.
(1)作出△ABC關(guān)于MN對稱的圖形△A1B1C1;
(2)說明△A2B2C2是由△A1B1C1經(jīng)過怎樣的平移變換得到的?
(3)若點(diǎn)A在直角坐標(biāo)系中的坐標(biāo)為(﹣1,3),試寫出A1、B1、C2坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等腰直角三角形,∠ABC=90°,點(diǎn)D在AB邊上(不與點(diǎn)A,B重合),以CD為腰作等腰直角△CDE,∠DCE=90°.
(1)如圖1,作EF⊥BC于F,求證:△DBC≌△CFE;
(2)在圖1中,連接AE交BC于M,求 的值;
(3)如圖2,過點(diǎn)E作EH⊥CE交CB的延長線于點(diǎn)H,過點(diǎn)D作DG⊥DC,交AC于點(diǎn)G,連接GH.當(dāng)點(diǎn)D在邊AB上運(yùn)動時,式子 的值會發(fā)生變化嗎?若不變,求出該值;若變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分別是AB、AD、CB上的點(diǎn),AM=CE=1,AN=3,點(diǎn)P從點(diǎn)M出發(fā),以每秒1個單位長度的速度沿折線MB﹣BE向點(diǎn)E運(yùn)動,同時點(diǎn)Q從點(diǎn)N出發(fā),以相同的速度沿折線ND﹣DC﹣CE向點(diǎn)E運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)后,另一個點(diǎn)也停止運(yùn)動.設(shè)△APQ的面積為S,運(yùn)動時間為t秒,則S與t函數(shù)關(guān)系的大致圖象為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c為常數(shù),點(diǎn)P(a,c)在第二象限,則關(guān)于x的方程ax2+bx+c=0根的情況是( )
A.有兩個相等的實(shí)數(shù)根
B.有兩個不相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根
D.無法判斷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com