【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)若點D在y軸負半軸上,且滿足S△COD=S△BOC,求點D的坐標.
【答案】(1)k=-1,b=4;(2)點D的坐標為(0,-4).
【解析】
(1)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,根據(jù)點A、C的坐標,利用待定系數(shù)法即可求出k、b的值;
(2)利用一次函數(shù)圖象上點的坐標特征可求出點B的坐標,設(shè)點D的坐標為(0,m)(m<0),根據(jù)三角形的面積公式結(jié)合S△COD=S△BOC,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,進而可得出點D的坐標.
(1)當(dāng)x=1時,y=3x=3,
∴點C的坐標為(1,3).
將A(﹣2,6)、C(1,3)代入y=kx+b,
得:,
解得:.
(2)當(dāng)y=0時,有﹣x+4=0,
解得:x=4,
∴點B的坐標為(4,0).
設(shè)點D的坐標為(0,m)(m<0),
∵S△COD=S△BOC,即﹣m=××4×3,
解得:m=-4,
∴點D的坐標為(0,-4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校八年級有800名學(xué)生,在體育中考前進行一次排球模擬測試,從中隨機抽取部分學(xué)生,根據(jù)其測試成績制作了下面兩個統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:
(1)本次抽取到的學(xué)生人數(shù)為________,圖2中的值為_________.
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是__________,眾數(shù)是________,中位數(shù)是_________.
(3)根據(jù)樣本數(shù)據(jù),估計我校八年級模擬體測中得12分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從地出發(fā),勻速駛向地.甲車以的速度行駛后,乙車才沿相同路線行駛.乙車先到達地并停留后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離與乙車行駛時間之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是;②;③點的坐標是;④.其中說法正確的是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】班級組織同學(xué)乘大巴車前往“研學(xué)旅行”基地開展愛國教育活動,基地離學(xué)校有90公里,隊伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊伍提前15分鐘到達基地.問:
(1)大巴與小車的平均速度各是多少?
(2)蘇老師追上大巴的地點到基地的路程有多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4個圖形有24個小圓,…則第n個圖形有__個小圓.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年共有萬名考生參加中考,為了了解這萬名考生的數(shù)學(xué)成績,從中抽取了名考生的數(shù)學(xué)成績進行統(tǒng)計分析,以下說法正確的有( )
①這種調(diào)查采用了抽樣調(diào)查的方式;②這種調(diào)查采用了全面調(diào)查的方式;③是樣本容量;④每名考生的數(shù)學(xué)成績是個體
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空完成推理過程:
如圖,∠1=∠2,∠A=∠D, 求證:∠B=∠C.
證明:∵∠1=∠2(已知),
∠1=∠3( ),
∴∠2=∠3(等量代換).
∴AF∥________( ).
∴∠D=∠4(兩直線平行,同位角相等 ).
∵∠A=∠D(已知),
∴∠A=∠4(等量代換).
∴AB∥CD(內(nèi)錯角相等,兩直線平行).
∴∠B=∠C( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com