6.如圖,矩形AOBC,點A、B分別在x、y軸上,對角線AB、OC交于點D,點C($\sqrt{3}$,1),點M是射線OC上一動點.
(1)求證:△ACD是等邊三角形;
(2)若△OAM是等腰三角形,求點M的坐標;
(3)若N是OA上的動點,則MA+MN是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.

分析 (1)利用點C坐標,即可求出相應角度,利用矩形性質(zhì),即可求出三角形CDA兩個內(nèi)角度數(shù)為60°,即可證明三角形是等邊三角形.
(2)由等腰三角形性質(zhì),對三角形OAM三邊關系進行討論,分別求出三種情況下點M的坐標即可;
(3)做點A關于直線OC對稱點,利用對稱性可以求出最小值.

解答 解:(1)∵C($\sqrt{3}$,1),
∴AC=1,OA=$\sqrt{3}$,
∴OC=2,
∴∠COA=30°,∠OCA=60°,
∵矩形AOBC,
∴∠ABC=∠OCB=30°,
∴∠ADC=60°,
∴△ACD是等邊三角形;

(2)△OAM是等腰三角形,
當OM=MA時,此時點M與點D重合,
∵C($\sqrt{3}$,1),點D為OC中點,
∴M($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).
當OM1=OA時,做M1E⊥OA,垂足為E,如下圖:

∴OM1=OA=$\sqrt{3}$,
由(1)知∠M1OA=30°,
∴M1E=$\frac{\sqrt{3}}{2}$,OE=$\frac{3}{2}$,
∴M1($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
當OA=AM2時,做M2F⊥OA,垂足為F,如上圖:
AM2=$\sqrt{3}$,
由(1)知∠COA=∠AM2O=30°,
∴∠M2AF=60°,
∴AF=$\frac{\sqrt{3}}{2}$,M2F=$\frac{3}{2}$,
M2($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$).
綜上所述:點M坐標為M($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)、($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$)、($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$).

(3)存在,做點A關于直線OC對稱點為G,如下圖:

則AG⊥OC,且∠GOA=60°,OG=OA=$\sqrt{3}$,
∴ON=$\frac{\sqrt{3}}{2}$,GN=$\frac{3}{2}$,
∵點A、G關于直線OC對稱,
∴MG=MA,
∴MA+MN=MG+MN,
∵N是OA上的動點,
∴當GN⊥x軸時,MA+MN最小,
∴存在MA+MN存在最小值,最小值為$\frac{3}{2}$.

點評 題目考查了一次函數(shù)綜合應用,考查知識點包括:等腰三角形、線段最值、動點問題,解決此類題目關鍵是找到圖形變換的規(guī)律,題目整體較難.適合學生壓軸訓練.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

16.如圖①,A、B、C、D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.
(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求$\frac{CB}{AC}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.元旦期間,某玩具店從玩具批發(fā)市場批發(fā)玩具進行零售,部分玩具批發(fā)價格與零售價格如下表:
 玩具型號
 批發(fā)價(元/個)202428
 零售價(元/個)253040
請解答下列問題:
(1)第一天,該玩具店批發(fā)A,B兩種型號玩具共59個,用去了1344元錢,這兩種型號玩具當天全部售完后一共能賺多少元錢?
(2)第二天,該玩具店用第一天全部售完后的總零售價錢批發(fā)A,B,C三種型號玩具中的兩種玩具共68個,且當天全部售完,請通過計算說明該玩具店第二天應如何進貨才能使全部售完后賺的錢最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.已知線段AB=20cm,直線AB上有一點C,且BC=6cm,M是線段AC的中點,試求AM的長度(提示:先畫圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖1,在平面直角坐標系中,點M的坐標為(3,0),以點M為圓心,5為半徑的圓與坐標軸分別交于點A、B、C、D.
(1)△AOD與△COB相似嗎?為什么?
(2)如圖2,弦DE交x軸于點P,且BP:DP=3:2,求tan∠EDA;
(3)如圖3,過點D作⊙M的切線,交x軸于點Q.點G是⊙M上的動點,問比值$\frac{GO}{GQ}$是否變化?若不變,請求出比值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.閱讀材料,善于思考的小軍在解方程組$\left\{\begin{array}{l}{2x+5y=3①}\\{4x+11y=5②}\end{array}\right.$時,采用了一種“整體代換”的解法:
解:將方程②變形:4x+10y+y=5
    即2(2x+5y)+y=5③
    把方程①代入③得:2×3+y=5
∴y=-1
    把y=-1代入①得x=4
∴方程組的解為$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$
請你解決以下問題:
(1)模仿小軍的“整體代換”法解方程組$\left\{\begin{array}{l}{3x-2y=5①}\\{9x-4y=19②}\end{array}\right.$
(2)已知x、y滿足方程組$\left\{\begin{array}{l}{5{x}^{2}-2xy+20{y}^{2}=82}\\{2{x}^{2}-xy+8{y}^{2}=32}\end{array}\right.$
    ①求x2+4y2的值;
    ②求$\frac{x+2y}{2xy}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.下列命題中是真命題的是( 。
A.算術平方根等于自身的數(shù)只有1
B.$\sqrt{\frac{1}{2}}$是最簡二次根式
C.有一個角等于60°的三角形是等邊三角形
D.兩角及其夾邊分別相等的兩個三角形全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.點A(1,y1)、B(2,y2)在直線y=2x+2上,y1與y2的大小關系是(  )
A.y1>y2B.y1<y2C.y1=y2D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.如圖,一次函數(shù)y=kx+b的圖象與兩坐標軸的正半軸相交,則k,b的取值范圍是( 。
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0

查看答案和解析>>

同步練習冊答案