如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC,BD相交于點(diǎn)O,若S△AOD=4,S△COB=9,AD=4,則BC的值為(  )
分析:先判斷出△AOD和△COB相似,再根據(jù)相似三角形面積的比等于相似比的平方列式計(jì)算即可得解.
解答:解:∵AD∥BC,
∴△AOD∽△COB,
又∵S△AOD=4,S△COB=9,
∴(
AD
BC
2=
4
9
,
即(
4
BC
2=
4
9
,
解得BC=6.
故選C.
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),主要利用了相似三角形面積的比等于相似比的平方的性質(zhì),判斷出兩個(gè)三角形相似是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案