【題目】已知點P(3﹣m,m﹣1)在第二象限,則m的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

【答案】A
【解析】解:已知點P(3﹣m,m﹣1)在第二象限,

3﹣m<0且m﹣1>0,

解得m>3,m>1,

所以答案是:A.

【考點精析】根據(jù)題目的已知條件,利用不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法的相關知識可以得到問題的答案,需要掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

運用上述知識,解決下列問題:

(1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;

(2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點E,連接AE,BE,DE,過點AAE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;EBED;SAPD+SAPB=1+.其中正確結論的序號是( 。

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC=63°,∠ECB=117°.

(1) ABED平行嗎?為什么?

(2)若∠P=Q,則∠1與∠2是否相等?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.

(1)判斷直線PC與⊙O的位置關系,并說明理由;
(2)若AB=9,BC=6.求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,為坐標原點,點的坐標為,點的坐標為,且滿足

1)若,判斷點處于第幾象限,給出你的結論并說明理由;

2)若為最小正整數(shù),軸上是否存在一點,使三角形的面積等于10,若存在,求點的坐標;若不存在,請說明理由.

3)點為坐標系內一點,連接,若,且,直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且GDF=ADF

1求證:ADE≌△BFE;

2連接EG,判斷EG與DF的位置關系并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一組平行線過點AAM于點M,作∠MAN=60°,AN=AM,過點NCNAN交直線于點C,在直線上取點B使BM=CN,若直線間的距離為2,間的距離為4,BC=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為迎接體育中考,了解學生的體育情況,學校隨機調查了本校九年級50名學生“30秒跳繩”的次數(shù),并將調查所得的數(shù)據(jù)整理如下:
30秒跳繩次數(shù)的頻數(shù)、頻率分布表

成績段

頻數(shù)

頻率

0≤x<20

5

0.1

20≤x<40

10

a

40≤x<60

b

0.14

60≤x<80

m

c

80≤x<100

12

n

根據(jù)以上圖表信息,解答下列問題:

(1)表中的a= , m=;
(2)請把頻數(shù)分布直方圖補充完整;(畫圖后請標注相應的數(shù)據(jù))
(3)若該校九年級共有600名學生,請你估計“30秒跳繩”的次數(shù)60次以上(含60次)的學生有多少人?

查看答案和解析>>

同步練習冊答案