【題目】綜合題。
(1)解不等式組:
(2)計算:(﹣π)0﹣(cos45°)1﹣12016+|1﹣2 |

【答案】
(1)解: ,

由①得:x≥﹣4,

由②得:x≤1,

則不等式組的解集為﹣4≤x≤1


(2)解:原式=1﹣ ﹣1+ ﹣1=﹣1
【解析】(1)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可;(2)原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,乘方的意義,以及絕對值的代數(shù)意義化簡,計算即可得到結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為-20,點B表示的數(shù)為16.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動.若點P、Q同時出發(fā),設(shè)運動時間為t(t>0)秒.

(1)填空:①點A、B之間的距離為 ;

②點P表示的數(shù)為 ,Q表示的數(shù)為 (用含t的代數(shù)式表示);

(2)當點P、Q到原點O的距離相等時,求t的值并求出此時點Q表示的數(shù);

(3)若點P從點A出發(fā)到達點B后立刻返回到點A并保持速度不變,點Q到達點A時停止運動,問點P運動多少秒時與點Q相距6個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學完三角形的內(nèi)、外角后,教師要求同學們根據(jù)所學的知道設(shè)計一個利用三角形一個外角等于與它不相鄰的兩個內(nèi)角的和求解的問題.如圖:在ABC中,∠1=2=3.

(1)試說明:∠BAC=DEF;

(2)若∠BAC=70°,DFE=50°,求∠ABC度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC⊥CB,垂足為C點,AC=CB=8cm,點Q是AC的中點,動點P由B點出發(fā),沿射線BC方向勻速移動.點P的運動速度為2cm/s.設(shè)動點P運動的時間為ts.為方便說明,我們分別記三角形ABC面積為S,三角形PCQ的面積為S1,三角形PAQ的面積為S2,三角形ABP的面積為S3

(1)S3   cm2(用含t的代數(shù)式表示);

(2)當點P運動幾秒,S1S,說明理由;

(3)請你探索是否存在某一時刻,使得S1=S2=S3?若存在,求出t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1A型服裝計酬16元,加工1B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1A型服裝和2B型服裝需4小時,加工3A型服裝和1B型服裝需7小時.(工人月工資=底薪+計件工資)

(1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時?

(2)一段時間后,公司規(guī)定:每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,AB=AC,∠BAC=36°,將△ABC繞點A按逆時針旋轉(zhuǎn)角度ɑ(0°<ɑ<180°)得到△ADE,連接CE、BD,BDCE相交于點F。

(1)求證:BD=CE

(2)ɑ等于多少度時,四邊形AFDE是平行四邊形?并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1 48(- (-48) (-8) ;

2 12 0.5 2 (3)2 ]

3)先化簡,再求值:

已知m 3 n ,求3m2n 2mn2 2mn m2n mn] 3mn2 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)﹣0.5﹣(﹣3 )+2.75﹣(+7

(2)(+×(﹣12)

(3)(﹣2)3÷ ×2

(4)﹣12×[2﹣(﹣4)2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=﹣ x+3與坐標軸分別交于點A,B,點P在拋物線y=﹣ (x﹣ 2+4上,能使△ABP為等腰三角形的點P的個數(shù)有( )
A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

同步練習冊答案