(2009•赤峰)如圖,在四邊形ABCD中,AB=BC,BF是∠ABC的平分線,AF∥DC,連接AC,CF.求證:CA是∠DCF的平分線.

【答案】分析:先證△ABF≌△CBF,得出AF=FC,利用等腰三角形的性質(zhì)可知∠3=∠4,再利用平行線的性質(zhì)可證出∠4=∠5,等量代換,可得:∠3=∠5.那么AC就是∠DCF的平分線.
解答:證明:∵BF是∠ABC的平分線,
∴∠1=∠2,
又AB=BC,BF=BF,
∴△ABF≌△CBF(SAS),
∴FA=FC,
∴∠3=∠4,
又AF∥DC,
∴∠4=∠5,
∴∠3=∠5,
∴CA是∠DCF的平分線.
點(diǎn)評:本題考查了角平分線的性質(zhì)、判定,全等三角形的判定和性質(zhì);找著并利用△ABF≌△CBF是正確解答題目的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•赤峰)如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對稱軸的拋物線過點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年內(nèi)蒙古赤峰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•赤峰)如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對稱軸的拋物線過點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《概率》(04)(解析版) 題型:填空題

(2009•赤峰)如圖,是由四個直角邊分別為3和4的全等的直角三角形拼成的“趙爽弦圖”,小亮隨機(jī)的往大正方形區(qū)域內(nèi)投針一次,則針扎在陰影部分的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年內(nèi)蒙古赤峰市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•赤峰)如圖,將點(diǎn)A(-,0)沿y軸正方向平移1個單位長度得到點(diǎn)P,連接PO,再將PO繞點(diǎn)O按順時針方向旋轉(zhuǎn)120°,則PO在旋轉(zhuǎn)過程中掃過的扇形面積為    .(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年重慶市課改實(shí)驗(yàn)區(qū)初中學(xué)業(yè)考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•赤峰)如圖,已知PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠P=40°,則∠BAC的度數(shù)是( )

A.10°
B.20°
C.30°
D.40°

查看答案和解析>>

同步練習(xí)冊答案