【題目】如圖,已知:∠A=D,1=2,下列條件中能使△ABC≌△DEF的有_____

①∠E=B;ED=BC;AB=EF;AF=CD.

【答案】

【解析】

全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)定理和已知條件逐個(gè)判斷即可.

①∠EB,不符合全等三角形的判定定理,不能推出ABC≌△DEF,所以①錯(cuò)誤;②EDBC,不符合全等三角形的判定定理,不能推出ABC≌△DEF,所以②錯(cuò)誤;③ABEF,符合全等三角形的判定定理,不能推出ABC≌△DEF,所以③錯(cuò)誤;④AFCD,AFCD,AFFCCDFC,ACDF,在ABCDEF中,∵ ABC≌△DEF,∴④正確,故答案為④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,AB=6,AD⊥BC于點(diǎn)D.點(diǎn)P在邊AB上運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥BC,與邊AC交于點(diǎn)E,連接ED,以PE、ED為鄰邊作平行四邊形PEDF.設(shè)線段AP的長(zhǎng)為x(0<x<6).

(1)求線段PE的長(zhǎng).(用含x的代數(shù)式表示)
(2)當(dāng)四邊形PEDF為菱形時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.

(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:△ADE∽△DCF;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí), 成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,請(qǐng)直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從﹣3,﹣1,0,1,3這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù)記為a,再?gòu)氖O碌乃膫(gè)數(shù)中任意抽取一個(gè)數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組 有整數(shù)解,且點(diǎn)(a,b)落在雙曲線 上的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從一個(gè)建筑物的A處測(cè)得對(duì)面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測(cè)點(diǎn)與樓的水平距離AD為31m,樓BC的高度大約為多少?(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點(diǎn),連AD,BE,F(xiàn)為線段AD的中點(diǎn),連接CF

(1)如圖1,當(dāng)D點(diǎn)在BC上時(shí),求證:①BE=2CF,②BE⊥CF.
(2)如圖2,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)銳角,其他條件不變,問(wèn)(1)中的關(guān)系是否仍然成立?如果成立請(qǐng)證明.如果不成立,請(qǐng)寫出相應(yīng)的正確的結(jié)論并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD(四個(gè)邊相等,四個(gè)角為直角)中,E,F(xiàn)分別為AD,BC的中點(diǎn),P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),則下列線段的長(zhǎng)等于AP+EP最小值的是( )

A. AB B. DE C. AF D. BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),△ABC是直角三角形,∠ACB=90°,點(diǎn)B、C都在第一象限內(nèi),CA⊥x軸,垂足為點(diǎn)A,反比例函數(shù)y1= 的圖象經(jīng)過(guò)點(diǎn)B;反比例函數(shù)y2= 的圖象經(jīng)過(guò)點(diǎn)C( ,m).

(1)求點(diǎn)B的坐標(biāo);
(2)△ABC的內(nèi)切圓⊙M與BC,CA,AB分別相切于D,E,F(xiàn),求圓心M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過(guò)60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫如表:

蔬菜的批發(fā)量(千克)

25

60

75

90

所付的金額(元)

125

300


(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;

(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案