(2006•東營)如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A,B的坐標(biāo)分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)P點的坐標(biāo)為多少(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;
(3)當(dāng)x為何值時,△NPC是一個等腰三角形?簡要說明理由.

【答案】分析:(1)求P點的坐標(biāo),也就是求OM和PM的長,已知了OM的長為x,關(guān)鍵是求出PM的長,方法不唯一,①可通過PM∥OC得出的對應(yīng)成比例線段來求;
②也可延長MP交BC于Q,先在直角三角形CPQ中根據(jù)CQ的長和∠ACB的正切值求出PQ的長,然后根據(jù)PM=AB-PQ來求出PM的長.得出OM和PM的長,即可求出P點的坐標(biāo).
(2)可按(1)②中的方法經(jīng)求出PQ的長,而CN的長可根據(jù)CN=BC-BN來求得,因此根據(jù)三角形的面積計算公式即可得出S,x的函數(shù)關(guān)系式.
(3)本題要分類討論:
①當(dāng)CP=CN時,可在直角三角形CPQ中,用CQ的長即x和∠ABC的余弦值求出CP的表達(dá)式,然后聯(lián)立CN的表達(dá)式即可求出x的值;
②當(dāng)CP=PN時,那么CQ=QN,先在直角三角形CPQ中求出CQ的長,然后根據(jù)QN=CN-CQ求出QN的表達(dá)式,根據(jù)題設(shè)的等量條件即可得出x的值.
③當(dāng)CN=PN時,先求出QP和QN的長,然后在直角三角形PNQ中,用勾股定理求出PN的長,聯(lián)立CN的表達(dá)式即可求出x的值.
解答:解:(1)過點P作PQ⊥BC于點Q,
有題意可得:PQ∥AB,
∴△CQP∽△CBA,
=,
=,
解得:QP=x,
∴PM=3-x,
由題意可知,C(0,3),M(x,0),N(4-x,3),
P點坐標(biāo)為(x,3-x).

(2)設(shè)△NPC的面積為S,在△NPC中,NC=4-x,
NC邊上的高為,其中,0≤x≤4.
∴S=(4-x)×x=(-x2+4x)
=-(x-2)2+
∴S的最大值為,此時x=2.

(3)延長MP交CB于Q,則有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=
②若CP=CN,則CN=4-x,PQ=x,CP=x,4-x=x,
∴x=;
③若CN=NP,則CN=4-x.
∵PQ=x,NQ=4-2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4-x)2=(4-2x)2+(x)2,
∴x=
綜上所述,x=,或x=,或x=
點評:本題主要考查了矩形的性質(zhì)、解直角三角形、等腰三角形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年山東省東營市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•東營)如圖,將網(wǎng)格中的三條線段沿網(wǎng)格線平移后組成一個首尾相接的三角形,至少需要移動( )

A.8格
B.9格
C.11格
D.12格

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省德州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•東營)如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A,B的坐標(biāo)分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)P點的坐標(biāo)為多少(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;
(3)當(dāng)x為何值時,△NPC是一個等腰三角形?簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省德州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•東營)如圖,將網(wǎng)格中的三條線段沿網(wǎng)格線平移后組成一個首尾相接的三角形,至少需要移動( )

A.8格
B.9格
C.11格
D.12格

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省德州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•東營)如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A,B的坐標(biāo)分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)P點的坐標(biāo)為多少(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;
(3)當(dāng)x為何值時,△NPC是一個等腰三角形?簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案