【題目】有一個運輸隊承包了一家公司運送貨物的業(yè)務,第一次運送18噸,派了1輛大卡車和5輛小卡車;第二次運送38噸,派了2輛大卡車和11輛小卡車,并且兩次派的車都剛好裝滿。

(1)兩種車型的載重量各是多少噸?

(2)若大卡車運送一次的費用為200元,小卡車運送一次的費用為60元,在第一次運送過程中怎樣安排大小車輛,才能使費用最少?(直接寫出派車方案)

【答案】(1)2)當2輛大車,1輛小車時,費用最低,最低費用為460

【解析】

1)設大卡車的載重量為x噸,小卡車的載重量為y噸,根據(jù)一輛大卡車和5輛小卡車一次運貨18噸以及兩輛大卡車和11輛小卡車一次運貨38噸,即可得出關于xy的二元一次方程組,解之即可得出結論;

2)根據(jù)一輛大卡車及一輛小卡車的載重量可得出一輛大卡車的載重量是小卡車的4倍,結合運費之間的關系即可得出運費最低的派車方案.

1)設大車、小車分別為x/輛,y/輛;

,解得;

答:大卡車的載重量為8噸,小卡車的載重量為2噸.

2)∵8÷2=4,60×4=240200

∴盡可能多的派大卡車.

當派3輛大卡車時,運費為200×3=600(元);

當派2輛大卡車、1輛小卡車時,運費為200×2+60=460(元),

600460,

∴安排2輛大卡車1輛小卡車,才能使費用最少.最低費用為460.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的沿湖道路l上有A、B兩個游船碼頭,觀光島嶼C在碼頭 A北偏東60°的方向,在碼頭 B北偏西45°的方向,AC=4km.游客小張準備從觀光島嶼C乘船沿CA回到碼頭A或沿CB回到碼頭B,設開往碼頭A、B的游船速度分別為v1、v2 , 若回到 A、B所用時間相等,則 =(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線ab,直線c與直線ab分別相交于C、D兩點,直線d與直線ab分別相交于A、B兩點,點P在直線AB上運動(不與A、B兩點重合)

(1)如圖1,當點P在線段AB上運動時,總有:∠CPD=∠PCA+PDB,請說明理由;

(2)如圖2,當點P在線段AB的延長線上運動時,∠CPD、∠PCA、∠PDB之間有怎樣的數(shù)量關系,并說明理由;

(3)如圖3,當點P在線段BA的延長線上運動時,∠CPD、∠PCA、∠PDB之間又有怎樣的數(shù)量關系(只需直接給出結論)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,線段直線,垂足為,平移線段,使點與點重合,點的對應點記為點.

操作與思考:

1)畫出線段和直線;

2)直線的位置關系是_______,理由是:____________________________;

線段的數(shù)量關系是_______,理由是:____________________________.

實踐與應用:

3)如圖,等邊和等邊的面積分別為35,點、在一直線上,則的面積是_____________.

4)如圖,網(wǎng)格中每個小正方形的邊長為1,請用三種不同方法,求出的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ABC中,ABAC10cm,BC8cm,點DAB的中點.如果點P在線段BC上由B出發(fā)向C點運動,同時點Q在線段CA上由C點出發(fā)向A點運動.設運動時間為t秒.

1)若點P的速度為3cm/s,用含t的式子表示第t秒時,BP   cm,CP   cm

2)在(1)的條件下,若點Q運動速度與點P的運動速度相等,經(jīng)過幾秒鐘BPDCQP全等,說明理由;

3)若點Q的運動速度與點P的運動速度不相等,且點P的速度比點Q的速度慢1cm/s時,點Q的運動速度為多少時?能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

根據(jù)以上信息,解答下列問題:
(1)設租車時間為 小時,租用甲公司的車所需費用為 元,租用乙公司的車所需費用為 元,分別求出 關于 的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點A逆時針旋轉90°得到△ADE,BC的延長線交DE于F,連接BD,若BC=2EF,試證明△BED是等腰三角形.

查看答案和解析>>

同步練習冊答案