(1)證明:連接OB.
∵∠COD=90°,且∠COD與∠CBD是
分別所對的圓心角和圓周角,
∴∠CBD=
∠COD=45°,
∵OB=OC,OB=OD,
∴∠OBC=∠BCO,∠OBD=∠BDO,
∵∠CBD=∠OBC+∠OBD=45°,
∴∠BCO+∠BDO=45°,
∵∠ACD=∠BCO+∠BDO,
∴∠ACD=45°,
在Rt△COD中,OC=OD,
∴∠OCD=45°,
∴∠OCA=90°,
∴直線AC是⊙O的切線;
(2)解:過O作OE⊥BD,垂足為E.
∴BD=2DE,
∵∠BCO+∠BDO=45°,∠BCO=15°,
∴∠BDO=30°,
在Rt△DOE中,
DE=OD•cos30°=2×
=
.
∴BD=2DE=2
.
分析:(1)連接OB,首先根據(jù)同弧所對的圓周角等于它所對圓心角度數(shù)的一半求出∠CBD,即為∠OBC+∠OBD的度數(shù),然后根據(jù)等邊對等角分別得到∠OBC=∠BCO,∠OBD=∠BDO兩對角的相等,等量代換可得到∠BCO+∠BDO的度數(shù),由已知的∠ACD=∠BCO+∠BDO,即可求出∠ACD=45°,再由△OCD為等腰直角三角形可求出∠OCD=45°,從而得到∠OCA=90°,利用經(jīng)過直徑的一端,并且垂直于這條直徑的直線是圓的切線可得證;
(2)由(1)中的∠BCO+∠BDD=45°,且∠BCO=15°,求出∠BDO=30°,然后在直角三角形ODE中,根據(jù)半徑的長及∠BDO的度數(shù),利用30°的余弦值即可求出DE的長,最后根據(jù)垂徑定理可得BD=2DE求出結(jié)果.
點(diǎn)評:此題考查了切線的判定,圓周角定理,等腰三角形的性質(zhì),垂徑定理,以及銳角三角函數(shù)的定義,是一道多知識的綜合題,要求學(xué)生把所學(xué)的知識融匯貫穿,靈活運(yùn)用,注意利用轉(zhuǎn)化的數(shù)學(xué)思想.其中證明切線的方法一般有以下兩種:①有點(diǎn)連接證明半徑(或直徑)與所證的直線垂直;②無點(diǎn)作垂線,證明圓心到直線的距離等于半徑.