18.已知函數(shù)y=$\frac{3}{4}$x-1,如果函數(shù)值y>2,那么相應(yīng)的自變量x的取值范圍是x>4.

分析 令y=$\frac{3}{4}$x-1>2,解關(guān)于x的不等式求出x的取值范圍即可.

解答 解:∵在函數(shù)y=$\frac{3}{4}$x-1中,函數(shù)值y>2,
∴$\frac{3}{4}$x-1>2,
∴x>4.
故答案為x>4.

點評 本題主要考查了一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是令y>2得出x的不等式,解不等式求出x的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.若$\sqrt{7}$的整數(shù)部分是a,小數(shù)部分是b,計算$\sqrt{7}$a+b的值為3$\sqrt{7}$-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.如圖,CD⊥AB,BC⊥AC,垂足分別為D,C,則線段AB,AC,CD中最短的一條為CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.甲、乙兩人同時解根式方程$\sqrt{x+b}$$+\sqrt{x+a}$=7,抄題時.甲錯抄成$\sqrt{x+b}$$+\sqrt{x-a}$=7,結(jié)果解得其根為12;乙錯抄成$\sqrt{x+d}$$+\sqrt{x+a}$=7,結(jié)果解得其根為13.已知兩人除錯抄外.解題過程都是正確的.若a,b,d均為整數(shù),求α,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(3,y1),(-2,y2)都在直線y=-$\frac{1}{2}$x+b上,則y1與y2大小關(guān)系是(  )
A.y1>y2B.y1=y2C.y1<y2D.不能比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.某市高新技術(shù)產(chǎn)業(yè)產(chǎn)值突破110億元,數(shù)據(jù)“110億”用科學(xué)記數(shù)法可表示為1.1×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.比較大小:$-\sqrt{3}$>-$\sqrt{3.14}$;2$\sqrt{15}$> $3\sqrt{6}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點,MN⊥BC交AC于點N.動點P從點B出發(fā)沿射線BA以每秒$\sqrt{3}$厘米的速度運動.同時,動點Q從點N出發(fā)沿射線NC運動,且始終保持MQ⊥MP設(shè)運動時間為t秒(t>0).
(1)△PBM與△QNM相似嗎?以圖1為例說明理由;
(2)探求BP2,PQ2,CQ2三者之間的數(shù)量關(guān)系,以圖1為例說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.某中學(xué)開展“陽光體育活動”,七年級一班全體同學(xué)分別參加了巴山舞、乒乓球、籃球三個項目的活動,陳老師統(tǒng)計了該班參加這三項活動的人數(shù),并繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)這兩個統(tǒng)計圖,可以知道該班參加乒乓球活動的人數(shù)是(  )
A.50B.25C.15D.10

查看答案和解析>>

同步練習(xí)冊答案