【題目】如圖,在每個小正方形邊長為1的網(wǎng)格中,點A,點C均落在格點上,點B為中點.
(Ⅰ)計算AB的長等于;
(Ⅱ)若點P,Q分別為線段BC,AC上的動點,且BP=CQ,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出當PQ最短時,點P,Q的位置,并簡要說明畫圖方法(不要求證明) .
【答案】;取BC的中點P,在AC上截取AQ= AC,線段PQ即為所求
【解析】解:(Ⅰ)由圖象可知AB= = .
(Ⅱ)設BP=CQ=x,
∵BC= = ,
∴PC= ﹣x,
在Rt△PCQ中,PQ= = ,
對于函數(shù)y=2x2﹣3 x+ ,當x=﹣ = 時,y有最小值,此時PQ的值最小,
此時PC=PB=CQ= AC.取BC的中點P,在AC上截取AQ= AC,圖中PQ即為所求.
所以答案是:取BC的中點P,在AC上截取AQ= AC,線段PQ即為所求.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,將射線Ox按逆時針方向旋轉β,得到的射線Oy,如果P為射線Oy上的一點,且OP=a,那么我們規(guī)定用(a,β)表示點P在平面內(nèi)的位置,并記為(a,β).例如,圖②中,如果OM=8,∠xOM=110°,那么點M在平面內(nèi)的位置記為M(8,110°),根據(jù)圖形,解答下列問題:
(1)如圖③,如果點N在平面內(nèi)的位置記為N(6,30°),那么ON=__ __,∠xON= .
(2)如果點A,B在平面內(nèi)的位置分別記為A(5,30°),B(12,120°),求A,B兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△A1B1C1、△A2B2C2、△A3B3C3、…、△AnBnn均為等腰直角三角形,且∠C1=∠C2=∠C3=…=∠n=90°,點A1、A2、A3、…、An和點B1、B2、B3、…、Bn分別在正比例函數(shù)y=x和y=﹣x的圖象上,且點A1、A2、A3、…、An的橫坐標分別為1,2,3…n,線段A1B1、A2B2、A3B3、…、AnBn均與y軸平行.按照圖中所反映的規(guī)律,則△AnBnn的頂點n的坐標是_____;線段C2018C2019的長是_____.(其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明根據(jù)市自來水公司的居民用水收費標準,制定了水費計算數(shù)值轉換機的示意圖.(用水量單位:m3,水費單位:元)
(1)根據(jù)轉換機程序計算下列各戶月應繳納水費
用戶 | 張大爺 | 王阿姨 | 小明家 |
月用水量/m3 | 6 | 15 | 17 |
月應繳納水費/元 |
|
|
|
(2)當x>15時,用含x的代數(shù)式表示水費 ;
(3)小麗家10月份水費是70元,小麗家10月份用水 m3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一張△ABC紙片,AC=8,∠C=30°,點E在AC邊上,點D在邊AB上,沿著DE對折, 使點A落在BC邊上的點F處,則CE的最大值為( )
A.
B.
C.4
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結論:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=∠CGE.其中正確的結論是( )
A. ②③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年端午前夕,某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,對某小區(qū)居民進行了抽樣調查,并將調查情況繪制成圖1、圖2兩幅統(tǒng)計圖(尚不完整),請根據(jù)統(tǒng)計圖解答下列問題:
(1)參加抽樣調查的居民有多少人?
(2)將兩幅不完整的統(tǒng)計圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù).
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小韋吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在多項式中,表示這個多項式的項數(shù),表示這個多項式中三次項的系數(shù).在數(shù)軸上點與點所表示的數(shù)恰好可以用與分別表示.有一個動點從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為秒.
(1)________,___________,線段_________個單位長度;
(2)點所表示數(shù)是________(用含的多項式表示);
(3)求當為多少時,線段的長度恰好是線段長度的三倍?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com