(2002•甘肅)拋物線y=x2-6x+21的頂點坐標是( )
A.(-6,-3)
B.(-6,3)
C.(6,3)
D.(6,-3)
【答案】分析:利用配方法求函數(shù)的頂點.
解答:解:∵y=x2-6x+21=(x2-12x)+21=(x2-12x+36-36)+21=(x-6)2+3,
∴拋物線y=x2-6x+21的頂點坐標是(6,3).
故選C.
點評:此題考查了二次函數(shù)的性質(zhì),二次函數(shù)為y=a(x-h)2+k頂點坐標是(h,k),對稱軸是x=h;此題還考查了配方法求頂點式.還可用公式求得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1997•甘肅)拋物線y=-4x2的對稱軸、頂點坐標是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2002•甘肅)直線l與直線y=2x+1的交點的橫坐標為2,與直線y=-x+2的交點的縱坐標為1,求直線l對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2002•甘肅)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點D在AB上運動,但與A、B不重合,過B、C、D三點的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個整數(shù)根時,求m的值.

(II)如圖,在直角坐標系xOy中,以點A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點P,B點在x軸正半軸上,過P點作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點.當(dāng)DE=4時,B點在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年甘肅省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•甘肅)拋物線y=x2-6x+21的頂點坐標是( )
A.(-6,-3)
B.(-6,3)
C.(6,3)
D.(6,-3)

查看答案和解析>>

同步練習(xí)冊答案