已知二次函數(shù)y=ax2+bx+c (a≠0),若2a+b=0,且當(dāng)x=-1時(shí),y=3,那么當(dāng)x=3時(shí),y=________.

3
分析:由已知條件“2a+b=0”求得b=-2a;然后將“x=-1,y=3”代入函數(shù)解析式求得3a+c=3;最后將x=3代入函數(shù)解析式求得y=3a+c=3.
解答:∵2a+b=0,
∴b=-2a;
又當(dāng)x=-1時(shí),y=3,
∴3=a-b+c=3a+c,即3a+c=3;
∴當(dāng)x=3時(shí),
y=9a+3b+c
=9a-6a+c
=3a+c
=3;
故答案為:3.
點(diǎn)評(píng):本題主要考查的是待定系數(shù)法求二次函數(shù)的解析式.解答此題時(shí),借用了二次函數(shù)圖象上點(diǎn)的坐標(biāo)的特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫(xiě)出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對(duì)稱(chēng)軸為直線x=1,它的部分自變量與函數(shù)值y的對(duì)應(yīng)值如下表,寫(xiě)出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說(shuō)法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對(duì)稱(chēng)

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案