【題目】在平面直角坐標(biāo)系中,已知、,為一次函數(shù)的圖像上一點(diǎn),且,則點(diǎn)的坐標(biāo)為_____________________.

【答案】

【解析】

根據(jù),把線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,構(gòu)造等腰直角三角形,再通過(guò)構(gòu)造全等三角形,求出點(diǎn)C的坐標(biāo),進(jìn)而求出線段BC的中點(diǎn)坐標(biāo),即可得到直線BP的解析式,根據(jù)點(diǎn)P是直線BP和直線的交點(diǎn),即可得到答案.

如圖所示:把線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到線段BC,過(guò)點(diǎn)AADy軸,過(guò)點(diǎn)CCEy軸,過(guò)點(diǎn)BDEx軸,分別交AD,CE于點(diǎn)D,E

∵∠BAD+ABD=ABD+CBE=90°,

∴∠BAD=CBE

又∵∠D=E=90°,AB=BC

BADCBEAAS),

BD=CEAD=BE,

,

BD=CE=4AD=BE=8,

∴點(diǎn)C的坐標(biāo)是:(-5,-4)

由旋轉(zhuǎn)的性質(zhì),可知:ABC是等腰直角三角形,令線段AC和線段BP交于點(diǎn)M,

∵∠ABP=CBP=45°,

∴點(diǎn)M是選段AC的中點(diǎn),

∴點(diǎn)M的坐標(biāo)是:(1,-2),

設(shè)直線BP的解析式為:y=kx+b,

,解得:,

∴直線BP的解析式為:y=-3x+1

聯(lián)立,解得:

∴點(diǎn)P的坐標(biāo)是:

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】材料一:我們可以將任意三位數(shù)記為,(其中、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字,且),顯然.

材料二:若一個(gè)三位數(shù)的百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字均不為0,則稱之為初始數(shù),比如123就是一個(gè)初始數(shù),將初始數(shù)的三個(gè)數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個(gè)新的初始數(shù),比如由123可以產(chǎn)生出132213,231,312,3215個(gè)新初始數(shù),這6個(gè)初始數(shù)的和成為終止數(shù).

1)求初始數(shù)125生成的終止數(shù);

2)若一個(gè)初始數(shù),滿足,且,記,,若,求滿足條件的初始數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們節(jié)能環(huán)保,綠色出行意識(shí)的增強(qiáng),越來(lái)越多的人喜歡騎自行車出行,同時(shí)也給自行車商家?guī)?lái)商機(jī). 某自行車行銷售型,型兩種自行車,經(jīng)統(tǒng)計(jì),2019年此車行銷售這兩種自行車情況如下:自行車銷售總額為8萬(wàn)元. 每輛型自行車的售價(jià)比每輛型自行車的售價(jià)少200元,型自行車銷售數(shù)量是自行車的1. 25倍, 自行車銷售總額比A型自行車銷售總額多.

1)求每輛型自行車的售價(jià)多少元.

2)若每輛型自行車進(jìn)價(jià)1400元,每輛型自行車進(jìn)價(jià)1300元,求此自行車行2019年銷售型自行車的總利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形的頂點(diǎn)的坐標(biāo)分別為,,的中點(diǎn),動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度,沿著運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒(.

1)點(diǎn)的坐標(biāo)是______;

2)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),點(diǎn)的坐標(biāo)是______(用表示);

3)求的面積之間的函數(shù)表達(dá)式,并寫(xiě)出對(duì)應(yīng)自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,為線段的延長(zhǎng)線上一點(diǎn),且,于點(diǎn),取的中點(diǎn),連接.

1)求證:

2)若,求證:;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、分別在梯形的兩腰、上,且,若,,,則的值為( )

A. 15.6 B. 15 C. 19 D. 無(wú)法計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長(zhǎng)35米,寬20米的長(zhǎng)方形場(chǎng)地上,修建若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校學(xué)生參與方案設(shè)計(jì),現(xiàn)有3位同學(xué)各設(shè)計(jì)了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請(qǐng)你根據(jù)這一問(wèn)題,在每種方案中都只列出方程不解.

①甲方案設(shè)計(jì)圖紙為圖l,設(shè)計(jì)草坪的總面積為600平方米.

②乙方案設(shè)計(jì)圖紙為圖2,設(shè)計(jì)草坪的總面積為600平方米.

③丙方案設(shè)計(jì)圖紙為圖3,設(shè)計(jì)草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形,,點(diǎn)、分別為邊、上的動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),的度數(shù)是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OBOC.

(1)如圖①,若點(diǎn)OBC上,求證:△ABC是等腰三角形

(2)如圖②,若點(diǎn)O在△ABC內(nèi)部,求證ABAC.

(3)若點(diǎn)O在△ABC的外部,ABAC還成立嗎?請(qǐng)畫(huà)圖說(shuō)明

查看答案和解析>>

同步練習(xí)冊(cè)答案