【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC,P是BD上一點(diǎn),過(guò)點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.

(1)求證:∠ADB=∠CDB;

(2)若∠ADC=90°,求證:四邊形MPND是正方形.

【答案】(1)(2)證明見(jiàn)解析

【解析】試題分析:(1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=∠CDB;

2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.

證明:(1對(duì)角線BD平分∠ABC,

∴∠ABD=∠CBD,

△ABD△CBD中,

,

∴△ABD≌△CBDSAS),

∴∠ADB=∠CDB;

2∵PM⊥AD,PN⊥CD,

∴∠PMD=∠PND=90°,

∵∠ADC=90°

四邊形MPND是矩形,

∵∠ADB=∠CDB

∴∠ADB=45°

∴PM=MD,

四邊形MPND是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣象臺(tái)預(yù)報(bào)“本市明天降水概率是30%”,對(duì)此消息下列說(shuō)法正確的是( )
A.本市明天將有30%的地區(qū)降水
B.本市明天將有30%的時(shí)間降水
C.本市明天有可能降水
D.本市明天肯定不降水

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣mx2+4x+2m與x軸交于點(diǎn)A(α,0),B(β,0),且=﹣2,

(1)求拋物線的解析式.

(2)拋物線的對(duì)稱軸為l,與y軸的交點(diǎn)為C,頂點(diǎn)為D,點(diǎn)C關(guān)于l的對(duì)稱點(diǎn)為E,是否存在x軸上的點(diǎn)M,y軸上的點(diǎn)N,使四邊形DNME的周長(zhǎng)最小?若存在,請(qǐng)畫(huà)出圖形(保留作圖痕跡),并求出周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.

(3)若點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)以點(diǎn)D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a:b=4:3,且b2=ac,則b:c等于(  )

A. 2:3 B. 3:2 C. 4:3 D. 3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,BC=8,AB=6,經(jīng)過(guò)點(diǎn)B和點(diǎn)D的兩個(gè)動(dòng)圓均與AC相切,且與AB、BC、AD、DC分別交于點(diǎn)G、H、E、F,則EF+GH的最小值是( )

A.6 B.8 C.9.6 D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OECD

(1)若∠BOD=28°,求∠AOE的度數(shù).

(2)若OF平分∠AOC,小明經(jīng)探究發(fā)現(xiàn):當(dāng)∠BOD為銳角時(shí),∠EOF的度數(shù)始終都是∠BOC度數(shù)的一半,請(qǐng)你判斷他的發(fā)現(xiàn)是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖反映的是小剛從家里跑步去體育館,在那里鍛煉了一陣后又走到文具店去買(mǎi)筆,然后走回家,其中x表示時(shí)間,y表示小剛離家的距離.根據(jù)圖象回答下列問(wèn)題:

(1)體育場(chǎng)離小剛家      千米,小剛在體育場(chǎng)鍛煉了      分鐘.

(2)體育場(chǎng)離文具店      千米,小剛在文具店停留了      分鐘.

(3)小剛從家跑步到體育場(chǎng)、從體育場(chǎng)走到文具店、從文具店散步回家的速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過(guò)A(0,1)、B(4,3)兩點(diǎn).

(1)求拋物線的解析式;

(2)求tanABO的值;

(3)過(guò)點(diǎn)B作BCx軸,垂足為C,點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),直線MN平行于y軸交直線AB于N,如果M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出M點(diǎn)的橫坐標(biāo);

(4)已知點(diǎn)E為拋物線上位于第二象限內(nèi)任一點(diǎn),且E點(diǎn)橫坐標(biāo)為m,作邊長(zhǎng)為10的正方形EFGH,使EFx軸,點(diǎn)G在點(diǎn)E的右上方,那么,對(duì)于大于或等于﹣1的任意實(shí)數(shù)m,F(xiàn)G邊與過(guò)A、B兩點(diǎn)的直線都有交點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,BDAC于點(diǎn)D,EBC上一點(diǎn),過(guò)E點(diǎn)作EFAC,垂足為F,過(guò)點(diǎn)DDHBCAB于點(diǎn)H.

(1)請(qǐng)你補(bǔ)全圖形。

(2)求證:BDH=CEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案