【題目】已知:在等邊ABC中, AB=, DE分別是AB,BC的中點(diǎn)(如圖).若將BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到BD1E1,設(shè)旋轉(zhuǎn)角為αα180°),記射線CE1AD1的交點(diǎn)為P.點(diǎn)PBC所在直線的距離的最大值為_____________

【答案】2

【解析】∵等邊△ABC∴∠ABC=60°,AB=CB

∵等邊△D1E1B,∴∠D1BE1=60°,D1B= BE1,

∴∠D1BA=E1BC,

在△D1BA和△E1BC中,

∴△D1BA≌△E1BCSAS),

∴∠PAB=PCB,

∵∠APC+PAB=ABC+PCB

∴∠APC=ABC=60°,

∵∠D1BE1=60°

P、B、E1D1共圓,

當(dāng)BPBC時(shí),點(diǎn)P BC所在直線距離最大,此時(shí)E1恰好在AB上且為AB中點(diǎn),

E1AB中點(diǎn),

E1C平分∠ACB,

∴∠PCB=30°,

tan30°==,

PB=BC×=2×=2.

故答案為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A0,a)、Bb,0).

1)若ab滿足a2+b28a4b+20=0.如圖,在第一象限內(nèi)以AB為斜邊作等腰RtABC,請求四邊形AOBC的面積S;

2)如圖,若將線段AB沿x軸向正方向移動(dòng)a個(gè)單位得到線段DED對應(yīng)A,E對應(yīng)B)連接DO,作EFDOF,連接AFBF,判斷AFBF的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線my=﹣0.25x+h2+kx軸的交點(diǎn)為AB,與y軸的交點(diǎn)為C,頂點(diǎn)為M36.25),將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為D

1)求拋物線n的解析式;

2)設(shè)拋物線nx軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段DE上一個(gè)動(dòng)點(diǎn)(P不與DE重合),過點(diǎn)Py軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為(xy),PEF的面積為S,求Sx的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;

3)設(shè)拋物線m的對稱軸與x軸的交點(diǎn)為G,以G為圓心,A,B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,將線段平移得到線段,點(diǎn)的坐標(biāo)為,連結(jié).

1)點(diǎn)的坐標(biāo)為__________________(用含的式子表示);

2)若的面積為4,求點(diǎn)的坐標(biāo);

3)如圖2,在(2)的條件下,延長軸于點(diǎn),延長軸于,軸上一動(dòng)點(diǎn),的值記為,在點(diǎn)運(yùn)動(dòng)的過程中,的值是否發(fā)生變化,若不變,請求出的值,并寫出此時(shí)的取值范圍,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。

A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB40°,點(diǎn)COA上,點(diǎn)POB上一動(dòng)點(diǎn),∠CPB的角平分線PD交射線OAD。設(shè)∠OCP的度數(shù)為,∠CDP的度數(shù)為

小明對xy之間滿足的等量關(guān)系進(jìn)行了探究,

下面是小明的探究過程,請補(bǔ)充完整;

1x的取值范圍是 ;

2)按照下表中x的值進(jìn)行取點(diǎn)、畫圖、計(jì)算,分別得到了yx的幾組對應(yīng)值,補(bǔ)全表格;

3)在平面直角坐標(biāo)系xOy中,

①描出表中各組數(shù)值所對應(yīng)的點(diǎn)(xy);

②描出當(dāng)x120°時(shí),y的值;

4)若∠AOB°,題目中的其它條件不變,用含、x的代數(shù)式表示y 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB,BC分別為線段,CD為雙曲線的一部分):

(1)分別求出線段AB和曲線CD的函數(shù)關(guān)系式;

(2)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(3)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCAB=5,AC=13,BC上的中線AD=6

1)以點(diǎn)D為對稱中心作出ABD的中心對稱圖形;

2)求點(diǎn)ABC的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:分式和分?jǐn)?shù)有著很多的相似點(diǎn).如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則,等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù).類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.任何一個(gè)假分式都可以化作整式與真分式的和的形式.

如:

1)下列分式中,屬于真分式的是__________(填序號);

2)將假分式化為整式與真分式的和的形式:__________;若假分式的值為正整數(shù),則整數(shù)的值為__________;

3)請你寫出假分式化成整式與真分式的和的形式的完整過程.

查看答案和解析>>

同步練習(xí)冊答案