(本題滿分10分)如圖,⊙O的直徑AB=4,C、D為圓周上兩點,且四邊形OBCD是菱形,過點D的直線EFAC,交BA、BC的延長線于點E、F

【小題1】(1)求證:EF是⊙O的切線;
【小題2】(2)求DE的長.


【小題1】(1)證明:∵AB是⊙O的直徑,
∴∠ACB=90°. …………………………  1分
∵四邊形OBCD是菱形,
OD//BC
∴∠1=∠ACB=90°.
EFAC,
∴∠2=∠1 =90°. ……………  2分
OD是半徑,
EF是⊙O的切線
【小題2】(2)解:連結(jié)OC,
∵直徑AB=4,
∴半徑OBOC=2.
∵四邊形OBCD是菱形,
ODBCOBOC=2. …………………………………………  4分
∴∠B=60°.
OD//BC,
∴∠EOD=∠B= 60°.
在Rt△EOD中,

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)

如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.

(1)點B的坐標為   ;用含t的式子表示點P的坐標為     ;(3分)

(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時,S有最大值?(4分)

(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標;若不存在,請說明理由.(3分)

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)如圖,已知二次函數(shù)的圖象的頂點為.二次函數(shù)的圖象與軸交于原點及另一點,它的頂點在函數(shù)的圖象的對稱軸上.

(1)求點與點的坐標;
(2)當四邊形為菱形時,求函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)如圖是某品牌太陽能熱火器的實物圖和橫斷面示意圖,已知真空集熱管與支架所在直線相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,
(1)求垂直支架的長度;(結(jié)果保留根號)
(2)求水箱半徑的長度.(結(jié)果保留三個有效數(shù)字,參考數(shù)據(jù):
         

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)
如圖,四邊形ABCD是長方形.

(1)作△ABC關(guān)于直線AC對稱的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省泰州市中考數(shù)學試卷 題型:解答題

(本題滿分10分)如圖,以點O為圓心的兩個同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點M,OM的延長線與BC相交于點N。

(1)點N是線段BC的中點嗎?為什么?

(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。

 

 

查看答案和解析>>

同步練習冊答案