在二次三項式x2-2x+3中,最高次項的系數(shù)是
1
1
分析:先找出最高次數(shù)項,再找出項的系數(shù)即可.
解答:解:在二次三項式x2-2x+3中,最高次項的系數(shù)是1,
故答案為:1.
點評:本題考查了多項式的應(yīng)用,主要檢查學(xué)生對多項式的有關(guān)內(nèi)容的掌握情況.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax-3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添-適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實數(shù),試比較x2-4x+5與-x2+4x-4的大小,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、對于二次三項式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使其成為完全平方式,再減去a2這項,使整個式子的值不變.于是有x2+2ax-3a2=x2+2ax-3a2+a2-a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像上面這樣把二次三項式分解因式的方法叫做添項法.
請用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于二次三項式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使其成為完全平方式,再減去a2這項,使整個式子的值不變.于是有x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2=(x+3a)(x-a)
像上面這樣把二次三項式分解因式的方法叫做添(拆)項法.
(1)請用上述方法把x2-4x+3分解因式.
(2)多項式x2+2x+2有最小值嗎?如果有,那么當它有最小值時x的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式.但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上一項1,使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:x2+2x-3=(x2+2x+1)-1-3=(x+1)2-22=(x+3)(x-1).
像這樣,先添一適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
請利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式,但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上1使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:
x2+2x-3=(x2+2x+1)-1-3
=(x+1)2-22
=(x+1+2)(x+1-2)
=(x+3)(x-1)
像這樣,先添一適當項,使式子出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.利用“配方法”分解因式:(1)a2-8a+12;(2)a2+4ab+3b2

查看答案和解析>>

同步練習冊答案