【題目】計(jì)算:
(1)(﹣81)+(﹣29)
(2)﹣7+13﹣6+20
(3)1+(﹣)﹣(﹣)﹣
(4)﹣0.5﹣(﹣3)+2.75﹣(+7)
(5)(+16)+(﹣3)﹣|﹣8|+|﹣12|﹣(﹣5)
(6)(﹣0.25)×(﹣2)×(﹣)×(+0.8)
【答案】(1)-110;(2)20;(3)2;(4)﹣1.75;(5)22;(6)﹣
【解析】
(1)根據(jù)有理數(shù)的加法運(yùn)算法則計(jì)算即可得出答案.
(2)根據(jù)有理數(shù)加減混合運(yùn)算法則進(jìn)行計(jì)算即可得出答案;
(3)根據(jù)加法的交換律、結(jié)合律簡(jiǎn)便計(jì)算,將分母相同的兩個(gè)數(shù)結(jié)合起來(lái)先相加,再進(jìn)行計(jì)算即可得出答案;
(4)根據(jù)有理數(shù)的加減混合運(yùn)算法則進(jìn)行計(jì)算即可得出答案;
(5)先將絕對(duì)值化簡(jiǎn),再按有理數(shù)的加減混合運(yùn)算法則進(jìn)行計(jì)算即可得出答案;
(6)先把小數(shù)化為分?jǐn)?shù),再根據(jù)有理數(shù)的乘法運(yùn)算法則進(jìn)行計(jì)算即可得出答案.
解:(1)原式=﹣(81+29)=﹣110
(2)原式=6﹣6+20=0+20=20
(3)原式=
=
=1﹣1+2
=2
(4)原式=﹣0.5+3+2.75﹣7
=﹣7.5+5.75
=﹣1.75
(5)原式=16+(﹣3)+(﹣8)+12+5
=33﹣11
=22
(6)原式=
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè),,,,將它放在直角坐標(biāo)系中,使斜邊在軸上,直角頂點(diǎn)在反比例函數(shù)的圖象上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線(xiàn),且和之間的距離為,小明同學(xué)制作了一個(gè)直角三角形硬紙板,其中,,.小明利用這塊三角板進(jìn)行了如下的操作探究:
(1)如圖1,若點(diǎn)在直線(xiàn)上,且.求的度數(shù);
(2)若點(diǎn)在直線(xiàn)上,點(diǎn)在和之間(不含、上),邊、與直線(xiàn)分別交于點(diǎn)和點(diǎn).
①如圖2,、的平分線(xiàn)交于點(diǎn).在繞著點(diǎn)旋轉(zhuǎn)的過(guò)程中,的度數(shù)是否變化?若不變,求出的度數(shù);若變化,請(qǐng)說(shuō)明理由;
②如圖3,在繞著點(diǎn)旋轉(zhuǎn)的過(guò)程中,設(shè),,求的取值范
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,一條生產(chǎn)線(xiàn)的流水線(xiàn)上依次有5個(gè)機(jī)器人,它們站立的位置在數(shù)軸上依次用點(diǎn)A1,A2,A3,A4,A5表示.
(1)若原點(diǎn)是零件的供應(yīng)點(diǎn),5個(gè)機(jī)器人分別到供應(yīng)點(diǎn)取貨的總路程是多少?
(2)若將零件的供應(yīng)點(diǎn)改在A1,A3,A5中的其中一處,并使得5個(gè)機(jī)器人分別到達(dá)供應(yīng)點(diǎn)取貨的總路程最短,你認(rèn)為應(yīng)該在哪個(gè)點(diǎn)上?通過(guò)計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線(xiàn),DE⊥AB于E,F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)試判斷AB與AF,EB之間存在的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,F是AD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連接DE,CF.
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=10,∠B=60°,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中的折線(xiàn)ABC表示某汽車(chē)的耗油量y(L/km)與速度x(km/h)之間的函數(shù)關(guān)系(30≤x≤120).已知線(xiàn)段BC表示的函數(shù)關(guān)系中,該汽車(chē)的速度每增加1km/h,耗油量增加0.002L/km.
(1)當(dāng)30≤x≤120時(shí),求y與x之間的函數(shù)表達(dá)式;
(2)該汽車(chē)的速度是多少時(shí),耗油量最低?最低是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
若,則;
若,則一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;
若,則一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;
若,則二次函數(shù)的圖象與坐標(biāo)軸的公共點(diǎn)的個(gè)數(shù)是2或3.
其中正確的是
A. 只有 B. 只有 C. 只有 D. 只有
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com