精英家教網 > 初中數學 > 題目詳情
(2010•遵義)如圖,共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,現從其余的小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的概率是( )

A.
B.
C.
D.
【答案】分析:根據隨機事件概率大小的求法,找準兩點:
①符合條件的情況數目;
②全部情況的總數.
二者的比值就是其發(fā)生的概率的大。
解答:解:∵空白部分的小正方形共有7個,
其中在最下面一行中取任意一個均能夠成這個正方體的表面展開圖,
最下面一行共有4個空格,
∴任取一個涂上陰影,能構成這個正方體的表面展開圖的概率是:
故選A.
點評:本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=
練習冊系列答案
相關習題

科目:初中數學 來源:2011年山東省泰安市中考數學樣卷(解析版) 題型:解答題

(2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《反比例函數》(04)(解析版) 題型:填空題

(2010•遵義)如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《一次函數》(03)(解析版) 題型:填空題

(2010•遵義)如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

查看答案和解析>>

科目:初中數學 來源:2010年貴州省遵義市中考數學試卷(解析版) 題型:填空題

(2010•遵義)如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

查看答案和解析>>

同步練習冊答案