【題目】已知:如圖,在△ABC中,DBC邊上的一點,連接AD,取AD的中點E,過點ABC的平行線與CE的延長線交于點F,連接DF

1)求證:AF=DC

2)若AD=CF,試判斷四邊形AFDC是什么樣的四邊形?并證明你的結論.

【答案】見解析;矩形.

【解析】試題分析:因為AF∥DCEAD的中點,即可根據(jù)AAS證明△AEF≌△DEC,故有AF=DC;由(1)知,AF=DCAF∥DC,可得四邊形AFDC是平行四邊形,又因為AD=CF,故可根據(jù)對角線相等的平行四邊形是矩形進行判定.

試題解析:(1∵AF∥DC, ∴∠AFE=∠DCE, 又∵∠AEF=∠DEC(對頂角相等),AE=DEEAD的中點),

∴△AEF≌△DECAAS),∴AF=DC

2)矩形.

由(1),有AF=DCAF∥DC四邊形AFDC是平行四邊形, 又∵AD=CF,

∴AFDC是矩形(對角線相等的平行四邊形是矩形).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C、D⊙O上,點E⊙O外,∠EAC=∠D=60°.

1)求∠ABC的度數(shù);

2)求證:AE⊙O的切線;

3)當BC=4時,求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以直角三角形中的一個銳角的度數(shù)為自變量x,另一個銳角的度數(shù)y為因變量,則它們的關系式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一種窗框的設計示意圖,矩形ABCD被分成上下兩部分,上部的矩形CDFE由兩個正方形組成,制作窗框的材料總長為6m.

(1)若AB為1m,直接寫出此時窗戶的透光面積__________m2

(2)設AB=x,求窗戶透光面積S關于x的函數(shù)表達式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法錯誤的個數(shù)是(

①經(jīng)過一點有且只有一條直線與已知直線平行;

②垂直于同一條直線的兩條直線互相平行;

③直線外一點到這條直線的垂線段,叫做這個點到直線的距離;

④同一平面內(nèi)不相交的兩條直線叫做平行線.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )
A.(a23=a5
B.a2a3=a6
C.a8÷a2=a4
D.a6÷a2=a4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為對角線AC、BD的交點,點E為BC上一點,連接EO,并延長交AD于點F,則圖中全等三角形共有( 。

A. 5對 B. 6對 C. 8對 D. 10對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】凸多邊形的外角和等于_____

查看答案和解析>>

同步練習冊答案