精英家教網(wǎng)如圖:拋物線(xiàn)經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn),
(1)求拋物線(xiàn)的解析式;
(2)求該拋物線(xiàn)的頂點(diǎn)坐標(biāo)以及最值;
(3)已知AD=AB(D在線(xiàn)段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線(xiàn)段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線(xiàn)段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線(xiàn)段PQ被BD垂直平分,求t的值.
分析:(1)已知拋物線(xiàn)圖象上的三點(diǎn)坐標(biāo),可利用待定系數(shù)法求出該拋物線(xiàn)的解析式;
(2)將(1)題所得拋物線(xiàn)的解析式,化為頂點(diǎn)坐標(biāo)式,即可得到該拋物線(xiàn)的頂點(diǎn)坐標(biāo)以及函數(shù)的最值;
(3)根據(jù)A、B的坐標(biāo),易求得AD=AB=5,則CD=AC-AD=2,連接DQ,由于BD垂直平分PQ,那么DP=DQ,根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)知:∠PDB=∠QDB=∠ABD,即AB∥DQ,此時(shí)△CDQ∽△CAB,利用相似三角形得到的比例線(xiàn)段即可求得DQ、PD的長(zhǎng),從而求得AP的值,進(jìn)而可求得t的值.
解答:精英家教網(wǎng)解:(1)設(shè)拋物線(xiàn)的解析式為:y=a(x+3)(x-4),則有:
4=a(0+3)(0-4),a=-
1
3
;
故拋物線(xiàn)的解析式為:y=-
1
3
(x+3)(x-4)=-
1
3
x2+
1
3
x+4;

(2)由(1)知:y=-
1
3
x2+
1
3
x+4=-
1
3
(x-
1
2
2+
49
12
,
故拋物線(xiàn)的頂點(diǎn)坐標(biāo)為:(
1
2
49
12
),最大值為
49
12


(3)易知OA=3,OB=OC=4;
則AB=5,AC=7,CD=2;
連接DQ,由于BD垂直平分PQ,則DP=DQ,得:
∠PDB=∠QDB,
而AD=AB,得:∠ABD=∠ADB,
故∠QDB=∠ABD,
得QD∥AB;
∴△CDQ∽△CAB,則有:
CD
CA
=
DQ
AB
,
2
7
=
DQ
5
,
∴PD=DQ=
10
7
,AP=AD-PD=5-
10
7
=
25
7
,
故t=
25
7
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、拋物線(xiàn)頂點(diǎn)坐標(biāo)的求法、線(xiàn)段垂直平分線(xiàn)的性質(zhì)、相似三角形的判定和性質(zhì)等重要知識(shí),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求出拋物線(xiàn)的解析式;
(2)P是拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在直線(xiàn)AC上方的拋物線(xiàn)上有一點(diǎn)D,使得△DCA的面積最大,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘇州一模)如圖,拋物線(xiàn)經(jīng)過(guò)A,C,D三點(diǎn),且三點(diǎn)坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為B點(diǎn),點(diǎn)F為y軸上一動(dòng)點(diǎn),作平行四邊形DFBG,
(1)B點(diǎn)的坐標(biāo)為
(3,0)
(3,0)
;
(2)是否存在F點(diǎn),使四邊形DFBG為矩形?如存在,求出F點(diǎn)坐標(biāo);如不存在,說(shuō)明理由;
(3)連結(jié)FG,F(xiàn)G的長(zhǎng)度是否存在最小值?如存在求出最小值;若不存在說(shuō)明理由;
(4)若E為AB中點(diǎn),找出拋物線(xiàn)上滿(mǎn)足到E點(diǎn)的距離小于2的所有點(diǎn)的橫坐標(biāo)x的范圍:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•高要市二模)已知:如圖,拋物線(xiàn)經(jīng)過(guò)點(diǎn)O、A、B三點(diǎn),四邊形OABC是直角梯形,其中點(diǎn)A在x軸上,點(diǎn)C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線(xiàn)移動(dòng),若線(xiàn)段PD將梯形OABC的面積分成1﹕3兩部分,求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)經(jīng)過(guò)A(-2,0)、B(8,0)兩點(diǎn),與y軸正半軸交與點(diǎn)C,且AB=BC,點(diǎn)P為第一象限內(nèi)拋物線(xiàn)上一動(dòng)點(diǎn)(不與B、C重合),設(shè)點(diǎn)P的坐標(biāo)為(m,n).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)D在BC上,且PD∥y軸,探索
BD•DCPD
的值;
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸為l,若以點(diǎn)P為圓心的⊙P與直線(xiàn)BC相切,請(qǐng)寫(xiě)出⊙P的半徑R關(guān)于m函數(shù)關(guān)系式,并判斷⊙P與直線(xiàn)l的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案