【題目】如圖所示,在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點(diǎn)A、D的坐標(biāo)分別是(0,0),(2,3),AB=5,則頂點(diǎn)C的坐標(biāo)是( )
A. (3,7)B. (5,3)C. (7,3)D. (8,2)
【答案】C
【解析】
分別過點(diǎn)D,點(diǎn)C作垂線垂直于x軸于E,F,如解析中的圖所示,證明三角形ADE與三角形BCF全等,得到BF的值,則點(diǎn)C的橫坐標(biāo)的值即為AB+BF=AF的長度.又因?yàn)?/span>DC∥AB,所以點(diǎn)C的縱坐標(biāo)與D的縱坐標(biāo)相等.
如圖所示:過點(diǎn)D,C分別作x軸的垂線于點(diǎn)E,F
∵四邊形ABCD是平行四邊形
∴AD=BC,
∵
∴
在與中
∴
∴AE=BF
∵AE是點(diǎn)D橫坐標(biāo)的值,AE=2
∴AF=AB+BF=7
∴點(diǎn)C的橫坐標(biāo)的值為7
又∵ DC∥AB
∴點(diǎn)C的縱坐標(biāo)的值等于點(diǎn)D縱坐標(biāo)的值,即為3
∴點(diǎn)C的坐標(biāo)為(7,3)
故答案為C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知直線a∥b,點(diǎn)A在直線a上,點(diǎn)B. C在直線b上,點(diǎn)P在線段AB上,∠1=70,∠2=100,求∠PCB的度數(shù).
(2)下表是某商行一種商品的銷售情況,該商品原價(jià)為560元,隨著不同幅度的降價(jià)(單位:元),日銷量(單位:件)發(fā)生相應(yīng)變化如下表:
降價(jià)(元) | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
日銷量(件) | 78 | 81 | 84 | 87 | 90 | 93 | 96 |
①根據(jù)表格所列出的變化關(guān)系,請你估計(jì)降價(jià)之前的日銷量是多少件?
②根據(jù)表格所列出的變化關(guān)系,請直接寫出與的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),、分別平分和,分別交射線于點(diǎn)、.
(1)求的度數(shù);
(2)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到使時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點(diǎn)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請判斷線段BM與DM的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩城市之間開通了動(dòng)車組高速列車。已知每隔2h有一列速度相同的動(dòng)車組列車從甲城開往乙城。如圖,OA是第一列動(dòng)車組列車離開甲城的路程s(km)與運(yùn)行時(shí)間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運(yùn)行時(shí)間t(h)的函數(shù)圖象。請根據(jù)圖中的信息,解答下列問題:
(1)從圖象看,普通快車發(fā)車時(shí)間比第一列動(dòng)車組列車發(fā)車時(shí)間___1h(填“早”或“晚”),點(diǎn)B的縱坐標(biāo)600的實(shí)際意義是___;
(2)請直接在圖中畫出第二列動(dòng)車組列車離開甲城的路程s(km)與時(shí)間t(h)的函數(shù)圖象;
(3)若普通快車的速度為100km/h,
①求BC的表達(dá)式,并寫出自變量的取值范圍;
②第二列動(dòng)車組列車出發(fā)多長時(shí)間后與普通快車相遇?
③請直接寫出這列普通快車在行駛途中與迎面而來的相鄰兩列動(dòng)車組列車相遇的時(shí)間間隔.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微商小明投資銷售一種進(jìn)價(jià)為每條元的圍巾.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系可近似的看作一次函數(shù): ,銷售過程中銷售單價(jià)不低于成本價(jià),而每條的利潤不高于成本價(jià)的.
()設(shè)小明每月獲得利潤為(元),求每月獲得利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式,并確定自變量的取值范圍.
()當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?
()如果小明想要每月獲得的利潤不低于元,那么小明每月的成本最少需要多少元?(成本進(jìn)價(jià)銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題.下面我們來探究“由數(shù)思形,以形助數(shù)”的方法在解決代數(shù)問題中的應(yīng)用.
探究一:求不等式|x﹣1|<2的解集
(1)探究|x﹣1|的幾何意義
如圖①,在以O為原點(diǎn)的數(shù)軸上,設(shè)點(diǎn)A′對應(yīng)的數(shù)是x﹣1,有絕對值的定義可知,點(diǎn)A′與點(diǎn)O的距離為
|x﹣1|,可記為A′O=|x﹣1|.將線段A′O向右平移1個(gè)單位得到線段AB,此時(shí)點(diǎn)A對應(yīng)的數(shù)是x,點(diǎn)B對應(yīng)的數(shù)是1.因?yàn)?/span>AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的幾何意義可以理解為數(shù)軸上x所對應(yīng)的點(diǎn)A與1所對應(yīng)的點(diǎn)B之間的距離AB.
(2)求方程|x﹣1|=2的解
因?yàn)閿?shù)軸上3和﹣1所對應(yīng)的點(diǎn)與1所對應(yīng)的點(diǎn)之間的距離都為2,所以方程的解為3,﹣1.
(3)求不等式|x﹣1|<2的解集
因?yàn)?/span>|x﹣1|表示數(shù)軸上x所對應(yīng)的點(diǎn)與1所對應(yīng)的點(diǎn)之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個(gè)距離小于2的點(diǎn)對應(yīng)的數(shù)x的范圍.請寫出這個(gè)解集:_________________________________.
探究二:探究的幾何意義
(1)探究的幾何意義
如圖③,在直角坐標(biāo)系中,設(shè)點(diǎn)M的坐標(biāo)為(x,y),過M作MP⊥x軸于P,作MQ⊥y軸于Q,則P點(diǎn)坐標(biāo)為(x,0),Q點(diǎn)坐標(biāo)為(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,則,因此,的幾何意義可以理解為點(diǎn)M(x,y)與點(diǎn)O(0,0)之間的距離MO.
(2)探究的幾何意義
如圖④,在直角坐標(biāo)系中,設(shè)點(diǎn)A′的坐標(biāo)為(x﹣1,y﹣5),由探究二(1)可知,,將線段A′O先向右平移1個(gè)單位,再向上平移5個(gè)單位,得到線段AB,此時(shí)點(diǎn)A的坐標(biāo)為(x,y),點(diǎn)B的坐標(biāo)為(1,5),因?yàn)?/span>AB=A′O,所以,因此的幾何意義可以理解為點(diǎn)A(x,y)與點(diǎn)B(1,5)之間的距離AB.
(3)探究的幾何意義,根據(jù)探究二(2)所得的結(jié)論,請寫出的幾何意義可以理解為:________________.
(4)的幾何意義可以理解為:________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家蔬菜公司收購到某種綠色蔬菜200噸,準(zhǔn)備加工后進(jìn)行銷售,銷售后獲利的情況如下表所示:
銷售方式 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利(元) | 500 | 800 |
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時(shí)間內(nèi)將這批蔬菜全部加工后銷售完.
(1)如果要求20天剛好加工完200噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?
(2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.
①試求出銷售利潤W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關(guān)系式;
②若要求在不超過16天的時(shí)間內(nèi),將200噸蔬菜全部加工完后進(jìn)行銷售,則加工這批蔬菜最多獲得多少利潤?此時(shí)如何分配加工時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),得到矩形AEFG,E點(diǎn)正好落在邊CD上,連接BE,BG,且BG交AE于P.
(1)求證:∠CBE=∠BAE;
(2)求證:PG=PB;
(3)若AB=,BC=3,求出BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com