(2002•淮安)設(shè)C為線段AB的中點(diǎn),四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑的⊙B與AB相交于F點(diǎn),延長EB交⊙B于G點(diǎn),連接DG交于AB于Q點(diǎn),連接AD.
求證:(1)AD是⊙B的切線;
(2)AD=AQ;
(3)BC2=CF•EG.
分析:(1)連接BD,由DC⊥AB,C為AB的中點(diǎn),由線段垂直平分線的性質(zhì),可得AD=BD,再根據(jù)正方形的性質(zhì),可得∠ADB=90°;
(2)由BD=BG與CD∥BE,利用等邊對(duì)等角與平行線的性質(zhì),即可求得∠G=∠CDG=∠BDG=
1
2
∠BCD=22.5°,繼而求得∠ADQ=∠AQD=67.5°,由等角對(duì)等邊,可證得AD=AQ;
(3)易求得∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,即可證得Rt△DCF∽R(shí)t△GED,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可證得結(jié)論.
解答:證明:(1)連接BD,
∵四邊形BCDE是正方形,
∴∠DBA=45°,∠DCB=90°,即DC⊥AB,
∵C為AB的中點(diǎn),
∴CD是線段AB的垂直平分線,
∴AD=BD,
∴∠DAB=∠DBA=45°,
∴∠ADB=90°,
即BD⊥AD,
∵BD為半徑,
∴AD是⊙B的切線;

(2)∵BD=BG,
∴∠BDG=∠G,
∵CD∥BE,
∴∠CDG=∠G,
∴∠G=∠CDG=∠BDG=
1
2
∠BCD=22.5°,
∴∠ADQ=90°-∠BDG=67.5°,∠AQB=∠BQG=90°-∠G=67.5°,
∴∠ADQ=∠AQD,
∴AD=AQ;

(3)連接DF,
在△BDF中,BD=BF,
∴∠BFD=∠BDF,
又∵∠DBF=45°,
∴∠BFD=∠BDF=67.5°,
∵∠GDB=22.5°,
在Rt△DEF與Rt△GCD中,
∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,
∴Rt△DCF∽R(shí)t△GED,
CF
ED
=
CD
EG

又∵CD=DE=BC,
∴BC2=CF•EG.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、切線的判定與性質(zhì)、正方形的性質(zhì)以及等腰三角形的判定與性質(zhì).此題綜合性較強(qiáng),難度較大,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2002•淮安)在平面直角坐標(biāo)系xOy中:已知拋物線y=-
1
2
x2+(m2-m-
5
2
)x+
1
3
(5m+8)
的對(duì)稱軸為x=-
1
2
,設(shè)拋物線與y軸交于A點(diǎn),與x軸交于B、C兩點(diǎn)(B點(diǎn)在C點(diǎn)的左邊),銳角△ABC的高BE交AO于點(diǎn)H.
(1)求拋物線的解析式;
(2)在(1)中的拋物線上是否存在點(diǎn)P,使BP將△ABH的面積分成1:3兩部分?如果存在,求出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案