【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

【答案】
(1)解:直線CE與⊙O相切.

理由如下:

∵四邊形ABCD是矩形,

∴BC∥AD,∠ACB=∠DAC;

又∵∠ACB=∠DCE,

∴∠DAC=∠DCE;

連接OE,則∠DAC=∠AEO=∠DCE;

∵∠DCE+∠DEC=90°

∴∠AE0+∠DEC=90°

∴∠OEC=90°,即OE⊥CE.

又OE是⊙O的半徑,

∴直線CE與⊙O相切


(2)解:∵tan∠ACB= = ,BC=2,

∴AB=BCtan∠ACB= ,

∴AC= ;

又∵∠ACB=∠DCE,

∴tan∠DCE=tan∠ACB= ,

∴DE=DCtan∠DCE=1;

方法一:在Rt△CDE中,CE= = ,

連接OE,設(shè)⊙O的半徑為r,則在Rt△COE中,CO2=OE2+CE2,即 =r2+3

解得:r=

方法二:AE=AD﹣DE=1,過點(diǎn)O作OM⊥AE于點(diǎn)M,則AM= AE=

在Rt△AMO中,OA= = ÷ =


【解析】(1)連接OE.欲證直線CE與⊙O相切,只需證明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根據(jù)三角函數(shù)的定義可以求得AB= ,然后根據(jù)勾股定理求得AC= ,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2 , 即 =r2+3,從而易得r的值;方法二、過點(diǎn)O作OM⊥AE于點(diǎn)M,在Rt△AMO中,根據(jù)三角函數(shù)的定義可以求得r的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長(zhǎng)線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在開展“美麗廣西,清潔鄉(xiāng)村”的活動(dòng)中某鄉(xiāng)鎮(zhèn)計(jì)劃購(gòu)買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
(1)設(shè)購(gòu)買A種樹苗x棵,購(gòu)買A、B兩種樹苗的總費(fèi)用為y元,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)如果購(gòu)買A、B兩種樹苗的總費(fèi)用不超過7560元,且B種樹苗的棵數(shù)不少于A種樹苗棵數(shù)的3倍,那么有哪幾種購(gòu)買樹苗的方案?
(3)從節(jié)約開支的角度考慮,你認(rèn)為采用哪種方案更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點(diǎn)M,AEBC交于點(diǎn)N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個(gè)結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請(qǐng)寫序號(hào),少選、錯(cuò)選均不得分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長(zhǎng)線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察推理如圖①,在△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l的同側(cè),,垂足分別為.求證AEC≌△CDB.

(2)類比探究如圖②,在RtABC中,∠ACB=90°,AC=4,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB,連接CB,求△ACB,的面積.

(3)拓展提升:如圖③,在△EBC中,∠E=ECB=60°,EC=BC=3,點(diǎn)OBC上,且OC=2,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連接OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn) F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間t.

查看答案和解析>>

同步練習(xí)冊(cè)答案