如圖,A(-3,n)、B(2,-3)是一次函數(shù)y1=kx+b的圖象和反比例函數(shù)y2=
mx
的圖象的兩個交點
①求反比例函數(shù)的解析式;
②求直線y1=kx+b與x軸的交點C 的坐標;
③直接寫出當y1>y2時,x的取值范圍?
分析:(1)把B(2,-3)代入反比例函數(shù)y2=
m
x
即可得到k的值為-6;
(2)先把A(-3,n)代入y2=-
6
x
確定n的值,然后把A(-3,2)、B(2,-3)分別代入一次函數(shù)y1=kx+b得到關于k、b的方程組,再解方程組即可;
(3)觀察圖象得到當x<-3或0<x<2時,一次函數(shù)y1的圖象都在反比例函數(shù)y2的圖象的上方,即y1>y2
解答:解:(1)把B(2,-3)代入反比例函數(shù)y2=
m
x
得m=-3×2=-6,
∴反比例函數(shù)的解析式y(tǒng)2=-
6
x


(2)把A(-3,n)代入y2=-
6
x
得,-3×n=-6,解得n=2,
∴點A的坐標為(-3,2),
把A(-3,2)、B(2,-3)分別代入一次函數(shù)y1=kx+b得,-3k+b=2,2k+b=-3,解得k=-1,b=-1,
∴直線函數(shù)的解析式為y1=-x-1,
令y=0,則-x-1=0,解得x=-1,
∴C點坐標為(-1,0);

(3)x<-3或0<x<2.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:同時滿足反比例函數(shù)的解析式和一次函數(shù)的解析式的點的坐標為它們圖象的交點坐標.也考查了待定系數(shù)法求函數(shù)的解析式以及坐標軸上點的坐標特點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案