如圖,四邊形ABDC中,∠ABD=∠ACD=90゜,BD=CD,求證:AD⊥BC.
分析:先由條件可以得出根據(jù)HL可以△ABD≌△ACD,可以得出AB=AC,∠BAD=∠CAD,就可以得出△ABE≌△ACE就可以得出∠AEB=∠AEC就可以得出結(jié)論.
解答:證明:∵∠ABD=∠ACD=90゜,
∴△ABD和△ACD是直角三角形.
在Rt△ABD和Rt△ACD中
AD=AD
BD=CD
,
∴Rt△ABD≌Rt△ACD(HL),
∴AB=AC,∠BAD=∠CAD.
在△ABE和△ACE中
AB=AC
∠BAD=∠CAD
AEAE

∴△BDF≌△CDE (SAS),
∴∠AEB=∠AEC.
∵∠AEB+∠AEC=180°,
∴∠AEB=90°.
∴AD⊥BC.
點(diǎn)評(píng):本題考查了直角三角形的判定及性質(zhì)的運(yùn)用,三角形全等的判定及性質(zhì)的運(yùn)用,垂直的判定的運(yùn)用,解答時(shí)先證明Rt△ABD≌Rt△ACD是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABDC中,△EDC是由△ABC繞頂點(diǎn)C旋轉(zhuǎn)40°所得,頂點(diǎn)A恰好轉(zhuǎn)到AB上一點(diǎn)E的位置,則∠1+∠2=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABDC、CDFE、EFHG都是正方形.
(1)求證:△ADF∽△HAD;
(2)利用上述結(jié)論,求證:∠AFB+∠AHB=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABDC內(nèi)接于⊙O,若∠BOC=120°,則∠A度數(shù)為( 。
A、60°B、120°C、80°D、100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABDC中,∠D=∠ABD=90゜,點(diǎn)D為BD的中點(diǎn),且OA平分∠BAC.
(1)求證:OC平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案