【題目】如圖,拋物線y=﹣x2+2x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D,連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(P不與B,C兩點(diǎn)重合),過(guò)點(diǎn)Px軸的垂線交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m(0m3)

(1)當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形;

(2)設(shè)△BCF的面積為S,求S的最大值.

【答案】(1)m=2(2)

【解析】試題分析:1PF的長(zhǎng)就是當(dāng)x=m時(shí),拋物線的值與直線BC所在一次函數(shù)的值的差.可先根據(jù)B,C的坐標(biāo)求出BC所在直線的解析式,然后將m分別代入直線BC和拋物線的解析式中,求得出兩函數(shù)的值的差就是PF的長(zhǎng). 根據(jù)直線BC的解析式,可得出E點(diǎn)的坐標(biāo),根據(jù)拋物線的解析式可求出D點(diǎn)的坐標(biāo),然后根據(jù)坐標(biāo)系中兩點(diǎn)的距離公式,可求出DE的長(zhǎng),然后讓PF=DE,即可求出此時(shí)m的值.

2)可將BCF分成兩部分來(lái)求:一部分是PFC,以PF為底邊,以P的橫坐標(biāo)為高即可得出PFC的面積. 一部分是PFB,以PF為底邊,以PB兩點(diǎn)的橫坐標(biāo)差的絕對(duì)值為高,即可求出PFB的面積. 然后根據(jù)BCF的面積=PFC的面積+PFB的面積,可求出關(guān)于S、m的函數(shù)關(guān)系式.

解:(1)對(duì)于拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴頂點(diǎn)D(1,4)

x=0,得到y=3;

y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,

解得:x=﹣1x=3,

A(﹣1,0),B(3,0),C(0,3),拋物線對(duì)稱軸為直線x=1;

設(shè)直線BC的函數(shù)解析式為y=kx+b,

B(3,0),C(0,3)分別代入得:,

解得:k=﹣1,b=3,

∴直線BC的解析式為y=﹣x+3,

當(dāng)x=1時(shí),y=﹣1+3=2,

E(1,2),

DE=4﹣2=2,

PFx軸,

P(m,﹣m+3),F(xiàn)(m,﹣m2+2m+3),

∴線段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,

連接DF,由PFDE,得到當(dāng)PF=DE時(shí),四邊形PEDF為平行四邊形,

由﹣m2+3m=2,得到m=2m=1(不合題意,舍去),

當(dāng)m=2時(shí),四邊形PEDF為平行四邊形;

(2)B(3,0),

OB=3,

S=PFOB=×3(﹣m2+3m)=﹣(m﹣2+(0m3),

則當(dāng)m=時(shí),S取得最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,放入6個(gè)形狀和大小都相同的小長(zhǎng)方形,已知小長(zhǎng)方形的長(zhǎng)為a,寬為b,且ab

(1)用含a、b的代數(shù)式表示長(zhǎng)方形ABCD的長(zhǎng)AD、寬AB;

(2)用含a、b的代數(shù)式表示陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)yx0)的圖象相交于點(diǎn)A、點(diǎn)B,與X軸交于點(diǎn)C,其中點(diǎn)A(﹣1,3)和點(diǎn)B(﹣3,n).

1)填空:m   ,n   

2)求一次函數(shù)的解析式和AOB的面積.

3)根據(jù)圖象回答:當(dāng)x為何值時(shí),kx+b≥(請(qǐng)直接寫(xiě)出答案)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在等邊三角形ABC中,BC8cm,射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts).

1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:四邊形AFCE是平行四邊形;

2)填空:①當(dāng)t   s時(shí),四邊形ACFE是菱形;②當(dāng)t   s時(shí),△ACE的面積是△ACF的面積的2倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸。圖中點(diǎn)A表示-10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長(zhǎng)度單位,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,問(wèn):

1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至點(diǎn)C需要________秒;

2PQ兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?

3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王曉同學(xué)要證明命題“對(duì)角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫(xiě)出了如下不完整的已知和求證.

已知:如圖,在平行四邊形ABCD中,

求證:平行四邊形ABCD

(1)在方框中填空,以補(bǔ)全已知和求證;

(2)按王曉的想法寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店在甲批發(fā)市場(chǎng)以每包m元的價(jià)格進(jìn)了40包茶葉,又在乙批發(fā)市場(chǎng)以每包n的價(jià)格進(jìn)了同樣的60包茶葉,如果商家以每包元的價(jià)格賣出這些茶葉,賣完后,這家商店( )

A. 盈利了B. 虧損了C. 不盈不虧D. 盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OAOB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長(zhǎng);

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價(jià)分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)A向右移動(dòng)1個(gè)單位得到點(diǎn)B,點(diǎn)B向右移動(dòng)(n+1)(n為正整數(shù))個(gè)單位得到點(diǎn)C,點(diǎn)A,B,C分別表示有理數(shù)a,b,c,

(1)當(dāng)n=1時(shí),

點(diǎn)A,B,C三點(diǎn)在數(shù)軸上的位置如圖所示,a,b,c三個(gè)數(shù)的乘積為正數(shù),數(shù)軸上原點(diǎn)的位置可   

A.在點(diǎn)A左側(cè)或在A,B兩點(diǎn)之間 B.在點(diǎn)C右側(cè)或在A,B兩點(diǎn)之間

C.在點(diǎn)A左側(cè)或在B,C兩點(diǎn)之間 D.在點(diǎn)C右側(cè)或在B,C兩點(diǎn)之間

若這三個(gè)數(shù)的和與其中的一個(gè)數(shù)相等,求a的值;

(2)將點(diǎn)C向右移動(dòng)(n+2)個(gè)單位得到點(diǎn)D,點(diǎn)D表示有理數(shù)d,a、b、c、d四個(gè)數(shù)的積為正數(shù),這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,且a為整數(shù),請(qǐng)?jiān)跀?shù)軸上標(biāo)出點(diǎn)D并用含n的代數(shù)式表示a.

查看答案和解析>>

同步練習(xí)冊(cè)答案