在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點P是AB邊上任意一點,直線PE⊥AB,與邊AC或BC相交于E.點M在線段AP上,點N在線段BP上,EM=EN,.
(1)如圖1,當點E與點C重合時,求CM的長;
(2)如圖2,當點E在邊AC上時,點E不與點A、C重合,設AP=x,BN=y,求y關于x的函數(shù)關系式,并寫出函數(shù)的定義域;
(3)若△AME∽△ENB(△AME的頂點A、M、E分別與△ENB的頂點E、N、B對應),求AP的長.
圖1 圖2 備用圖
[解] (1) 由AE=40,BC=30,AB=50,ÞCP=24,又sinÐEMP=ÞCM=26。
(2) 在Rt△AEP與Rt△ABC中,∵ ÐEAP=ÐBAC,∴ Rt△AEP ~ Rt△ABC,
∴ ,即,∴ EP=x,
又sinÐEMP=ÞtgÐEMP==Þ=,∴ MP=x=PN,
BN=AB-AP-PN=50-x-x=50-x (0<x<32)。
(3) j 當E在線段AC上時,由(2)知,,即,ÞEM=x=EN,
又AM=AP-MP=x-x=x,
由題設△AME ~ △ENB,∴ ,Þ=,解得x=22=AP。
k 當E在線段BC上時,由題設△AME ~ △ENB,∴ ÐAEM=ÐEBN。
由外角定理,ÐAEC=ÐEAB+ÐEBN=ÐEAB+ÐAEM=ÐEMP,
∴ Rt△ACE ~ Rt△EPM,Þ,即,ÞCE=…j。
設AP=z,∴ PB=50-z,
由Rt△BEP ~ Rt△BAC,Þ,即=,ÞBE=(50-z),
∴CE=BC-BE=30-(50-z)…k。
由j,k,解=30-(50-z),得z=42=AP。
科目:初中數(shù)學 來源: 題型:
A、12 | B、6 | C、2 | D、3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、9:4 | B、9:2 | C、3:4 | D、3:2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com