【題目】如圖,在平面直角坐標(biāo)系中,等腰直角△ABC,ABBCABBC,點(diǎn)C在第一象限.已知點(diǎn)Am,0),B0n)(nm0),點(diǎn)P在線段OB上,且OPOA

1)點(diǎn)C的坐標(biāo)為   (用含m,n的式子表示)

2)求證:CPAP

【答案】1)(nm+n);(2)詳見解析.

【解析】

1)過點(diǎn)CCDy軸于點(diǎn)D,由“AAS”可證CDB≌△BOA,可得BO=CD=nAO=BD=m,即可求解;

2)由線段的和差關(guān)系可得DP=n=DC,可得∠DPC=45°,可得結(jié)論.

1)如圖,過點(diǎn)CCDy軸于點(diǎn)D,

∴∠CDB90°

∴∠DCB+DBC90°,且∠ABO+CBD90°

∴∠DCB=∠ABO,且ABBC,∠CDB=∠AOB90°

∴△CDB≌△BOAAAS

BOCDn,AOBDm

ODm+n,

∴點(diǎn)Cn,m+n),

故答案為:(n,m+n);

2)∵OPOAm,ODm+n,

DPnDC,∠OPA45°,

∴∠DPC45°

∴∠APC90°,

APPC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn) A﹣2,0),B20),C02,點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當(dāng) AD′∥CE時(shí),求α的大。

2如圖,若 90°α180°,當(dāng)點(diǎn) D落在線段 BE上時(shí),求 sin∠CBE的值;

3若直線AD與直線BE相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、cRtABCRtBED 的邊長,已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為勾系一元二次方程

請(qǐng)解決下列問題:

(1)寫出一個(gè)勾系一元二次方程;

(2)求證:關(guān)于 x勾系一元二次方程,必有實(shí)數(shù)根;

(3)若 x 1勾系一元二次方程的一個(gè)根,且四邊形 ACDE 的周長是6,求ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為12的等邊三角形,點(diǎn)邊上一動(dòng)點(diǎn),由點(diǎn)向點(diǎn)運(yùn)動(dòng)(與不重合),點(diǎn)延長線上一點(diǎn),與點(diǎn)同時(shí)以相同的速度由點(diǎn)延長線方向運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),過點(diǎn),連接于點(diǎn)

1)當(dāng)時(shí),求的長;

2)證明:在運(yùn)動(dòng)過程中,點(diǎn)是線段的中點(diǎn);

3)點(diǎn),點(diǎn)運(yùn)動(dòng)過程中線段的長是否為定值?如果線段的長為定值,求出線段的長;如果線段的長不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次錘子、剪刀、布游戲,下列命題中錯(cuò)誤的是(

A.紅紅不是勝就是輸,所以紅紅勝的概率為

B.紅紅勝或娜娜勝的概率相等

C.兩人出相同手勢(shì)的概率為

D.娜娜勝的概率和兩人出相同手勢(shì)的概率一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條筆直的公路上有甲乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地.設(shè)他們同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t(分),與乙地的距離為s(米),圖中線段EF,折線OABD分別表示兩人與乙地距離s和運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象.

1)李越騎車的速度為______米/分鐘;

2B點(diǎn)的坐標(biāo)為______;

3)李越從乙地騎往甲地時(shí),st之間的函數(shù)表達(dá)式為______;

4)王明和李越二人______先到達(dá)乙地,先到______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=BC=5cm,AC=6cm,點(diǎn)P從頂點(diǎn)B出發(fā),沿BCA以每秒1cm的速度勻速運(yùn)動(dòng)到A點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為x秒,BP長度為ycm.某學(xué)習(xí)小組對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是他們的探究過程,請(qǐng)補(bǔ)充完整:

1)通過取點(diǎn),畫圖,測(cè)量,得到了x(秒)與ycm)的幾組對(duì)應(yīng)值:

x

0

1

2

3

4

5

6

7

8

9

10

11

y

0.0

1.0

2.0

3.0

4.0

4.5

4.1

4

4.5

5.0

要求:補(bǔ)全表格中相關(guān)數(shù)值(保留一位小數(shù));

2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)x約為______時(shí),BP=CP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為位似中心將四邊形ABCD放大后得到四邊形A'B'C'D',OA=4,OA'=8,則四邊形ABCD和四邊形A'B'C'D'的周長的比為( )

A. 12 B. 14

C. 21 D. 41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:如果身高在選定標(biāo)準(zhǔn)的±2%范圍之內(nèi)都稱為普啟遍身高.為了了解某校九年級(jí)男生中具有普遍身高的人數(shù),我們從該校九年級(jí)男生中隨機(jī)抽出10名男生,分別測(cè)量出他們的身高(單位:cm),收集并整理如下統(tǒng)計(jì)表:

男生
序號(hào)











身高x(cm)

163

171

173

159

161

174

164

166

169

164

根據(jù)以上信息,解答如下問題:

(1)計(jì)算這組數(shù)據(jù)的三個(gè)統(tǒng)計(jì)量:平均數(shù)、中位數(shù)、眾數(shù);

(2)請(qǐng)你選擇其中一個(gè)統(tǒng)計(jì)量作為選定標(biāo)準(zhǔn),找出這10名男生中具有普遍身高是哪幾位男生?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案